• Title/Summary/Keyword: Avionics System

Search Result 304, Processing Time 0.024 seconds

A Study for Method of Curved Approach Using the GPS to Apply VFR Airport (GPS를 이용한 VFR 공항에서의 곡선접근 방법에 관한 연구)

  • Ju, Yo-Han;Jun, Hyang-Sig;Jeong, Myeong-Sook;Park, Soo-Bog;Hong, Seung-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2014
  • Recently a system is being required to replace ILS due to increasing air traffic. In this paper, Curved approach is applied to an airport where ILS approach cannot be applied due to its geographical condition and restricted aerospace condition, and verified by flight test. After analysing conditions of Tae-an airfield of Hanseo University with virtual ILS approach, airfield applicability was evaluated by Curved approach using by GPS. Normally simulation is performed after establishing approach procedure using electric map, but recently verification is being performed by flight test without simulation because accuracy and reliability are increased. In this paper, established procedure is verified modified by flight test with Pilot Test and Auto Pilot test and controllability and passenger's stability were also checked.

Detection Performance Comparison of ADS-B and TCAS Using Simulation (시뮬레이션을 활용한 ADS-B와 TCAS의 탐지 성능 비교)

  • So, Jun-Soo;KU, SungKwan;Hong, Gyo-young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.465-472
    • /
    • 2015
  • In order to improve the performance of TCAS it should improve the performance of the sensor, which transmits a variety of information. In this paper, To improve the performance of the existing radar sensors such as being used in behalf of the next generation air traffic control system, ads-b the applied. In addition, ADS-B in a high precision by using information from the correction GPS system, SBAS assume would be able to apply an improved location accuracy for TCAS and analyzed TCAS and ADS-B. Played the simulation results, TCAS equipment receives the help of these ADS-B can calculate a CPA to determine the position of the aircraft in advance, and it was confirmed that it is possible to reduce the unnecessary RA operation, also, the pilot reduction and the workload, it has advantages such as fuel consumption and time associated with the reduced operation unnecessary RA was confirmed.

Considerations on In-Flight Validation for KASS (KASS 비행시험 및 검사 시 고려사항 분석)

  • Koo, Bon-Soo;Lee, Eun-Sung;Nam, Gi-Wook;Kang, Jae-Min;Cho, Jeong-Ho;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Method establishment needs for recent shortening the flight path, fuel reduction, reduction of the flight delay time, increase of the route capacity like as relieve congested airspace and solving future demand. However, As the existing conventional navigation systems is impossible to be resolved. Hereupon, SBAS has been developed with using the GNSS. ICAO has recommended that SBAS need to be operated with aircraft operation from 2025, korea is also developing KASS in accordance with the recommendation. In this paper, before the 2022 KASS will be completed, KASS can be expected using for flight test and inspection as analyzing KASS flight test and relative specifications.

Performance Comparison and Test of Fixed FOD Automatic Detection System and Moving FOD Automatic Detection System (고정형 이물질(FOD) 자동 탐지 시스템과 이동형 이물질 자동 탐지 시스템의 성능 비교 및 시험)

  • Kim, Sung-Hee;Hong, Jae-Beom;Park, Kwang-Gun;Choi, In-Kyu;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.495-500
    • /
    • 2019
  • Foreign object debris (FOD) is a generic term for various metals and non-metal foreign object and materials with potential hazards to aircraft operations. Since the method of manual FOD detection and collection in the aircraft moving area is very low in efficiency and economic efficiency, it is essential to develop to FOD automatic detection system suitable for domestic environment. This paper is the result of the performance comparison test results of the two systems for the combined operation of each optimal detection time and 95% accuracy above 100 m for complex operation using the fixed FOD automatic detection system and the mobile FOD system using EO/IR camera and radar at Taean Airfield Hanseo University. It is expected that FOD can be performed unattended through continuous R & D.

Designing Integrated Development Environments and Integration Agents for Intelligent Software Development (지능형 소프트웨어 개발을 위한 통합개발환경 및 연동 에이전트 설계)

  • Min-gi Seo;Da-na Jung;Yeon-je Cho;Ju-chul Shin;Seong-woo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.635-642
    • /
    • 2023
  • With the development of artificial intelligence technology, drones are evolving beyond simple remote control tools into intelligent drones that perform missions autonomously. The importance of drones is gradually gaining attention due to the use of drones in overseas military conflicts and the analysis of the future operational environment in Korea. AMAD is proposed for the rapid development of intelligent drones. In order to develop intelligent software based on AMAD, an integrated development environment (IDE) that supports users with functions such as debugging, performance evaluation, and monitoring is essential. In this paper, we define the concepts of the development environment required for intelligent software development and describe the results of reflecting them in the design of the IDE and AMAD's agents, SVI and MPD, which are interfaced with the IDE.

Measure to Introduction of Performance-Based Communication and Surveillance (PBCS) in Korea (국내 성능기반항공통신 및 감시(PBCS) 도입 방안)

  • Hong, Seung-Boem;Choi, Won-Hyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.336-343
    • /
    • 2016
  • Future air navigation system (FANS) Committee overcomes the limitations of traditional systems, the development of worldwide new system that allows the development of air traffic management have been determined to be necessary. In order to accommodate the rapid increase in aircraft traffic and maximize the safe air navigation efficiency, ICAO is recommending a new performance-based communications and surveillance (PBCS) system. However, although utilizing wireless data link in the case of korea currently, the introduction of the PBCS is not performed normally. In this paper, we review the concept of PBCS, and aviation developed countries look to the applied case of PBCS. It also analyzes trends and status and problems of Korea and introduce future policy directions for CNS/ATM system improvement.

Implementation of the Traffic Control System based Low Cost Dual Modular Redundancy (저비용 이중화 시스템 기반 교통신호제어 (시스템) 구현)

  • Lee, Dong-Woo;Na, Jong-Whoa;Kim, Nam-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.491-500
    • /
    • 2017
  • This paper investigates a low cost dual modular redundancy system based on heartbeat which can be applied to traffic control signal system. Failure of the traffic control signal system can cause traffic confusion and traffic accidents. Therefore safety and reliability of traffic control should be secured using fault tolerance technology. To do this, we configured a redundant board using the open source hardware and the heartbeat technique of Linux HA. The function of the traffic signal control system was verified and the fault recovery time was measured using fault injection test. As a result of the test, the fault recovery time was confirmed to be less than 9 seconds on average, confirming that the reliability target time is satisfied. Based on the results of this study, it is expected that it can be applied to fields requiring high reliability systems such as aviation, space, and nuclear power embedded systems.

AVLS Using the Dedicated Wireless Communication between Vehicle and Road-Side Equipment (차량과 노변기지국간 전용 무선 데이터 통신을 이용한 차량위치 추적 시스템)

  • Hong, Sung-Bum;Lee, Jung-Gu;Na, Won;Choi, Un-Seok;Baek, Joong-Hwan;Hwang, Byung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2000
  • In this paper, we propose an AVLS(Automatic Vehicle Location System) using the DSRC(Dedicated Short Range Communication) which adopts a radio communication tool between RSE(Road-Side Equipment) and OBE(On-Board Equipment) on a vehicle and uses the ISM bandwidth of 5.8GHz radio frequency. Typical AVLS uses the sensors for detecting the vehicle, but the DSRC system is developed for supporting various services such as the position of vehicle, clearance, vehicle to vehicle communication, collection and distributions of traffic and road information. Also, for fast processing, we design three-layer configuration of physical(L1), data link(L2), and application layer(L7), which simplifies the seven-layer configuration. We suggest the proposed system as a new technology for replacement of typical wireless communication system and sensors for AVLS.

  • PDF

Comparative Analysis of the Software Certification: RTCA DO-178C and RESSAC (RTCA DO-178C와 새로운 RESSAC 소프트웨어 인증기술의 비교 분석)

  • Lee, Dongmin;Lee, Dongwoo;Oh, Seungjun;Kwon, Oseong;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.13-21
    • /
    • 2020
  • RTCA DO-178C is a development guideline to ensure aircraft system airworthiness. However, there is an opinion that the application of DO-178C to the development of UAV of more than MTOW 150 kg is over regulated because the severity of the risk from UAV is lower than that of normal aircraft. To address issue, EASA and FAA have been working on the Re-Engineering and Streamlining the Standards for Avionics Certification(RESSAC) project since 2016 with the goal of establishing a new certification scheme that simplifies existing aircraft certification procedures and standards. This paper analyzes the current DO-178C certification process and presents advantages by comparing and analyzing the new RESSAC certification process, which simplifies processes and outputs in comparing with the DO-178C certification process, while it ensures flight safety of the vehicle.

Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling (매개변수 사전 오차 모델링 기법을 이용한 SAR 요동측정 알고리즘)

  • Park, Woo Jung;Park, Yong-gonjong;Lee, Soojeong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.566-573
    • /
    • 2019
  • In order to obtain high-quality images by motion compensation in the airborne synthetic aperture radar (SAR), accurate motion sensing in image acquisition section is necessary. Especially, reducing relative position error and discontinuity in motion sensing is important. To overcome the problem, we propose a pre-parametric error modeling (P-PEM) algorithm which is a real-time motion sensing algorithm for the airborne SAR in this paper. P-PEM is an extended version of parametric error modeling (PEM) method which is a motion sensing algorithm to mitigate the errors in the previous work. PEM estimates polynomial coefficients of INS error which can be assumed as a polynomial in the short term. Otherwise, P-PEM estimates polynomial coefficients in advance and uses at image acquisition section. Simulation results show that the P-PEM reduces relative position error and discontinuity effectively in real-time.