• Title/Summary/Keyword: Avionic Embedded System

Search Result 5, Processing Time 0.019 seconds

Reliability Evaluation for the Avionic Embedded System (항공용 임베디드 시스템 하드웨어 신뢰성 평가)

  • Kim, Byeong-Young;Lee, Dong-Woo;Na, Jong-Wha
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2009
  • Air Traffic Management (ATM) system requires extremely high reliability for the safe and dependable operations in the airport. This paper reports a study on the reliability of the prototype ATM hardware system including the servers and local area networks. Reliability Block Diagram and Fault Tree Analysis on the prototype ATM hardware were performed.

  • PDF

A Study on the Triple Module Redundancy ARM processor for the Avionic Embedded System (항공용 임베디드 시스템을 위한 Triple Module Redundancy 구조의 임베디드 하드웨어 신뢰성 평가)

  • Lee, Dong-Woo;Kim, Byeong-Young;Ko, Wan-Jin;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • The design of avionic embedded systems requires high-dependability. In this paper, we studied the dependability of the triple modular redundancy (TMR) hardware for highly reliable aviation embedded system. In order to evaluate the dependability of the base ARM processor and the TMR ARM processor, we developed the simulation model of the reduced ARM and TMR ARM processors and performed the simulation fault injection for the analysis of the dependability of the two targets. In the fault injection experiments, we calculated the error recovery rate of the two the processor models. From the experimental results, we could confirm that the reliability of the TMR ARM processor was greater than the single ARM processor by ten times in some cases.

Linux-based ARINC 653 Health Monitor (리눅스 기반 ARINC 653 헬스 모니터)

  • Yoon, Young-Il;Joe, Hyunwoo;Kim, Hyungshin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.183-191
    • /
    • 2014
  • The software running on avionic system is required to be highly reliable and productive. The air transport industry has developed ARINC Specification 653(ARINC653) as a standardized software requirement of avionics computers. The document specifies the interface boundary between avionics application software and the core executive software. Dependability in ARINC 653 is provided by spatial and temporal partitioning whilst fault-tolerance is provided by health monitoring mechanism. Legacy real-time operating systems are used to support ARINC653 health monitor on integrated modular avionics(IMA). However, legacy real-time operating systems are costly and difficult to modify the kernel. In this paper, we suggest a Linux-based ARINC653 health monitor. Functionalities to support ARINC653 health monitor are implemented as a Linux kernel module and its performance is evaluated.

Design and Verification of Mission Equipment Package System for Korean Utility Helicopter (한국형 기동헬기 임무탑재장비체계 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Yu, Yeon-Woon;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.388-396
    • /
    • 2011
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). MEP system development is classified mission-critical embedded system but KUH MEP system developed including flight-critical data implementation. It is important to establish the good development and verification process for the successful system development. This paper describe the development and verification process in each phase for the KUH MEP system. MEP system design is verified through the qualification test, system failure test and compatibility test in System Integration Laboratory(SIL).

Design of Graphic Generator for Driving HUD(Head-Up Display) and MFD(Multi-Function Display) (전방시현기 및 다기능시현기 구동을 위한 그래픽 영상생성기 설계 연구)

  • 황상현;이재억;박덕배
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.72-82
    • /
    • 2002
  • This paper presents the design technology of a Graphic Generator which drives the embedded aircraft display equipments such as HUD(Head-Up Display) and MFD (Multi-Function Display) those provide pilot with the most important mission information. The main issue of this design is how we can implement the real-time embedded graphic generator using a general purpose processor as a substitute for the obsolete the production of specific graphic processor in the military market. So we proposed two kinds of method that one is a software solution so called graphic kernel system, interpreting the display file, controlling the graphic system and pre-processing graphic primitives, the other is a hardware solution so called graphic engine, interpreting passed commands through the graphic kernel system, post-processing the looping calculation taking much of time as implemented by software. We have tested and verified the functionalities and the required performance of Graphic Generator.