• 제목/요약/키워드: Aviation Manufacturing Industry

검색결과 37건 처리시간 0.025초

CFRP 드릴링 공정에서의 공구의 특성에 따른 절삭부하와 공구마모 거동의 고찰 (Study on Tool Wear and Cutting Forces by Tool Properties in CFRP Drilling)

  • 박동섭;정영훈
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.83-88
    • /
    • 2017
  • Recently, the use of advanced materials with light weight significantly increases because of global regulation on CO2 emission. Especially, CFRP (carbon fiber reinforced plastics) one of the most promising advanced materials. Since CFRP has pretty higher strength per unit weight than steel, it is one of most popular materials in aviation industry and its application to automobile rises sharply. Especially, one of the frequent machining processes for CFRP is drilling to make a hole, however, CFRP drilling has troublesome limitations in hole quality and productivity induced due to delamination, splintering and severe tool wear. Particularly, cutting loads increase caused by tool wear makes delamination and splintering even severer. Therefore, tool wear monitoring or reduction in CFRP drilling must be considered seriously. In this study, we measured thrust force, flank wear, and tool surface temperature in drilling using various tools with different sizes and materials. Consequently, it was presented the effects of tool properties on drilled hole quality, thrust force and tool surface temperature.

초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정 (Manufacturing process of micro-nano structure for super hydrophobic surface)

  • 임동욱;박규백;박정래;고강호;이정우;김지훈
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

복합재 재료인증을 위한 시험입회 방법론 (Test Witness Methodology for Acquisition of the Composite Material Qualification Data)

  • 이승윤
    • 항공우주시스템공학회지
    • /
    • 제9권3호
    • /
    • pp.8-11
    • /
    • 2015
  • Since the late 1990's, FAA, NASA and the aerospace industry have worked together to develop the sharing system of the composite material qualification databases which were obtained through the standardized fabrication and testing procedures. The result was what is now known as the AGATE(Advanced General Aviation Transport Experiments) or NCAMP(National Center for Advanced Materials Performance) methodology, a more cost-effective concept that shifts the major responsibility for qualification and testing from the aircraft manufacturer to the material supplier. The properties of composite materials are largely dependent on the testing as well as the raw material properties and the manufacturing process including the process control parameters. Thus it is important in the composite material qualification to comply with the standardized testing procedures. In this paper, I will describe the standardized witness methodologies of certification engineers to reduce the effect of testing variability within the qualification data.

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.

중복안정성 확보를 위한 항공전자 소프트웨어 설계방안 연구 (A Study on the Avionics Software Design for Redundancy)

  • 임성신;조한상;김종문;송재일
    • 항공우주시스템공학회지
    • /
    • 제8권2호
    • /
    • pp.21-26
    • /
    • 2014
  • The aircraft manufacturers are constantly driving to reduce manufacturing lead times and cost at the same time as the product complexity increases and technology continues to change. Integrated Modular Avionics (IMA) is a solution that allows the aviation industry to manage their avionics complexity. IMA defines an integrated system architecture that preserves the fault containment and 'separation of concerns' properties of the federated architectures. In software side, the air transport industry has developed ARINC 653 specification as a standardized Real Time Operating System (RTOS) interface definition for IMA. It allows hosting multiple applications of different software levels on the same hardware in the context of IMA architecture. This paper describes a study that provided the avionics software design for separation of fault and backup of core function to reduce workload of pilot with cost efficiency.

전기동력 수직이착륙 항공기의 복합재료 적용을 위한 소재인증 방안 고찰 (A Study on the Certification Method for the Application of Composite Material of eVTOL Aircraft)

  • 배성환;조성인;최청호;전승목
    • 한국항공우주학회지
    • /
    • 제48권12호
    • /
    • pp.969-976
    • /
    • 2020
  • 전 세계적으로 도심항공교통이 미래 혁신산업으로 주목받고 있으며 국내/외 유수의 산업체들은 신개념의 전기동력 수직이착륙 항공기 설계 및 제작에 구조적 강건성과 경량화를 위해 복합재료의 적용을 고려하고 있다. 본 논문에서는 신개념의 전기동력 수직이착륙 항공기에 복합재료를 적용하기 위하여 항공선진국의 복합재료 인증체계 및 국내 실정에 적합한 항공용 복합재료 인증 절차 및 방법, 재료 입증을 수행할 조직구성 등 항공안전기본계획에 의해 제도화된 복합재료 인증체계에 대해 분석하였다. 국내에서 수립된 항공용 복합재료 인증체계에 의해 신개념의 전기동력 수직이착륙 항공기 제작사는 사전 소재인증을 통해 국산 항공기에 복합재료를 적용하는 것이 용이해졌을 뿐만 아니라 형식증명 기간 내에 소재 입증에 대한 부담이 감소할 것이다. 또한, 재료 품질 및 성능이 입증된 국산 복합재료의 제작사는 국산 항공기 적용을 위한 진입이 수월할 것이며 항공기에 적용한 경험이 있는 재료 제작사는 해외 수출에도 긍정적인 영향을 미칠 것이다. 이를 통해 신개념의 전기동력 수직이착륙 항공기 산업발전을 도모하고 국내에서 제작된 기체의 국제적 신인도 제고를 기대할 수 있을 것이다.

RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구 (A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP)

  • 김태화;문성호;강성호;권순재
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

국가연구개발사업 및 국방연구개발사업 간 비교법적 검토 - 항공기산업 진흥을 위한 기술료 제도 개선에 관한 연구 - (Comparative legal review between national R&D projects and defence R&D programs - A study on improvement of royalty system for the promotion of aircraft industry -)

  • 이해준;김선이
    • 항공우주정책ㆍ법학회지
    • /
    • 제35권1호
    • /
    • pp.153-180
    • /
    • 2020
  • 본 연구는 우리나라의 자동차산업, 조선업 등 일부 중공업이 세계적으로 높은 수준의 생산규모와 기술수준을 달성한 것에 비해 상대적으로 발전이 저조한 항공기산업을 육성하기 위해서는 어떠한 법적, 정책적 사안의 개선이 필요한지에 대해 알아보는데 그 의의가 있다. 우리나라의 항공기산업이 여타 산업에 비해 저조한 성장세를 보이고 있는데 국가 경제규모를 비롯하여 관련 산업의 발달 수준, 항공기 기술 수준, 항공기 제조 수요 등의 변수를 적절히 사용할 수 있는 시장구조를 구축하지 못했기 때문이라고 볼 수 있다. 대부분의 산업은 경쟁체제의 시장구조 하에 민간이 주도하여 성장하지만, 항공기산업과 같은 중공업은 막대한 규모의 초기 투자비용과 높은 기술력, 충분한 양의 수요를 확보하여야만 최소한의 경제성을 유지할 수 있기에 불완전경쟁체제의 시장구조 하에 정부가 주도하여 성장하는 것이 일반적이다. 이에 우리나라의 항공기산업은 군 수요를 중심으로 하는 군용 항공기를 개발하고 양산하는 것에 집중되어 있었으나, 미국과의 BASA(Bilateral Aviation Safety Agreement; 상호항공안전협정)를 체결함으로써 분위기의 반전을 도모하였다. 이에 차세대 중형항공기 개발 사업을 추진하기 위한 예비타당성 조사까지 2010년에 수행되었으나 컨소시움 대상인 캐나다의 Bombardier사와 입장 차이로 인해 무산되고, 현재는 한국항공우주산업(KAI)이 단독으로 Bombardier사의 Q400 면허생산을 추진 중이며 그마저도 순탄치 않다. 이처럼 개발에 난항을 겪고 있는 중대형 민간 항공기에 비해 KAI와 항우연 등에서 민수용 헬기를 비롯하여 무인항공기, 유인항공기의 무인화 기술을 성공적으로 개발하고 있다. 또한 무인항공기 분야는 세계적으로 독점적인 영향력을 행사하고 있는 제조사가 아직까지 마땅하지 않으므로 향후 항공기산업 육성을 위해 민간용 헬기 및 무인항공기 분야에 초점을 맞추어 정부 주도의 연구개발사업을 추진할 필요가 있다고 본다. 또한 KT-1과 T-50과 같은 군용항공기도 순조롭게 수출되고 있는 추세이며, 대한민국 내 항공기 제조에 관한 최대 수요자는 군이라는 점을 간과할 수 없으므로 민군겸용 개발(spin-up), 군용기술 개발 후 민간이전(spin-off), 민간기술 개발 후 국방 분야 활용(spin-on)이 가능하도록 국가연구개발사업과 국방연구개발 사업을 동시에 추진할 필요가 있다. 그러나 양 사업은 사업추진 방식과 전담부서, 기술료 제도에 있어 여러 차이점이 있다. 이에 본 연구를 통해 국가연구개발사업과 국방연구개발사업의 기술 소유권과 실시권, 그리고 기술료 제도에 대해 알아보았다. 그리고 해당 제도의 문제점을 확인하고 개선방안을 도출하였다.

항공기 제조업에서 생산계획 동기화를 통한 데이터기반 구매조달 및 재고관리 방안 연구 (A Scheme of Data-driven Procurement and Inventory Management through Synchronizing Production Planning in Aircraft Manufacturing Industry)

  • 유경열;최홍석;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.151-177
    • /
    • 2021
  • Purpose This paper aims to improve management performance by effectively responding to production needs and reducing inventory through synchronizing production planning and procurement in the aviation industry. In this study, the differences in production planning and execution were first analyzed in terms of demand, supply, inventory, and process using the big data collected from a domestic aircraft manufacturers. This paper analyzed the problems in procurement and inventory management using legacy big data from ERP system in the company. Based on the analysis, we performed a simulation to derive an efficient procurement and inventory management plan. Through analysis and simulation of operational data, we were able to discover procurement and inventory policies to effectively respond to production needs. Design/methodology/approach This is an empirical study to analyze the cause of decrease in inventory turnover and increase in inventory cost due to dis-synchronize between production requirements and procurement. The actual operation data, a total of 21,306,611 transaction data which are 18 months data from January 2019 to June 2020, were extracted from the ERP system. All them are such as basic information on materials, material consumption and movement history, inventory/receipt/shipment status, and production orders. To perform data analysis, it went through three steps. At first, we identified the current states and problems of production process to grasp the situation of what happened, and secondly, analyzed the data to identify expected problems through cross-link analysis between transactions, and finally, defined what to do. Many analysis techniques such as correlation analysis, moving average analysis, and linear regression analysis were applied to predict the status of inventory. A simulation was performed to analyze the appropriate inventory level according to the control of fluctuations in the production planing. In the simulation, we tested four alternatives how to coordinate the synchronization between the procurement plan and the production plan. All the alternatives give us more plausible results than actual operation in the past. Findings Based on the big data extracted from the ERP system, the relationship between the level of delivery and the distribution of fluctuations was analyzed in terms of demand, supply, inventory, and process. As a result of analyzing the inventory turnover rate, the root cause of the inventory increase were identified. In addition, based on the data on delivery and receipt performance, it was possible to accurately analyze how much gap occurs between supply and demand, and to figure out how much this affects the inventory level. Moreover, we were able to obtain the more predictable and insightful results through simulation that organizational performance such as inventory cost and lead time can be improved by synchronizing the production planning and purchase procurement with supply and demand information. The results of big data analysis and simulation gave us more insights in production planning, procurement, and inventory management for smart manufacturing and performance improvement.

환경조건간 합동을 이용한 복합재료 허용치 생성 기법 (Pooling-Across-Environments Method for the Generation of Composite-Material Allowables)

  • 이승윤
    • 항공우주시스템공학회지
    • /
    • 제10권3호
    • /
    • pp.63-69
    • /
    • 2016
  • The properties of composite materials, when compared to those of metallic materials, are highly variable due to many factors including the batch-to-batch variability of raw materials, the prepreg manufacturing process, material handling, part-fabrication techniques, ply-stacking sequences, environmental conditions, and test procedures. It is therefore necessary to apply reliable statistical-analysis techniques to obtain the design allowables of composite materials. A new composite-material qualification process has been developed by the Advanced General Aviation Transport Experiments (AGATE) consortium to yield the lamina-design allowables of composite materials according to standardized coupon-level tests and statistical techniques; moreover, the generated allowables database can be shared among multiple users without a repeating of the full qualification procedure by each user. In 2005, NASA established the National Center for Advanced Materials Performance (NCAMP) with the purpose of refining and enhancing the AGATE process to a self-sustaining level to serve the entire aerospace industry. In this paper, the statistical techniques and procedures for the generation of the allowables of aerospace composite materials will be discussed with a focus on the pooling-across-environments method.