• Title/Summary/Keyword: Aviation Image

Search Result 115, Processing Time 0.026 seconds

Improving Imaging Quality Assessment of Cabinet X-Ray Security Systems (캐비닛 엑스선 검색장비 이미지품질평가 고도화 방안 연구)

  • Yoon, Yeon Ah;Jung, Jin Hyeong;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.1
    • /
    • pp.47-60
    • /
    • 2021
  • Purpose: This study proposes methods and procedures for evaluating imaging security systems quality of cabinet x-ray screening system to enhance performance certification technology. Also, conducted a comparative analysis of the literature of test-kit for imaging security quality evaluation. Methods: Comparative analysis of the test-kits and related documents for image quality assessment of cabinet x-ray screening equipment. This allows assessment items were selected and the methods for each assessment item were proposed. In addition, the configuration method of the assessment team was established by applying the technology readiness assessment(TRA). Results: Four of the assessment items were selected when estimate image quality by a comparative analysis of literature. For each assessment item, the evaluation method and minimum level of availability were determined. Finally, this paper proposes an imaging quality assessment of cabinet X-ray imaging security systems. Conclusion: Development of imaging security systems evaluation procedures for cabinet X-ray screening systems can be help improve performance certification of aviation security equipment.

Enhancing air traffic management efficiency through edge computing and image-aided navigation

  • Pradum Behl;S. Charulatha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.33-53
    • /
    • 2024
  • This paper presents a comprehensive investigation into the optimization of Flight Management Systems (FMS) with a particular emphasis on data processing efficiency by conducting a comparative study with conventional methods to edge-computing technology. The objective of this research is twofold. Firstly, it evaluates the performance of FMS navigation systems using conventional and edge computing methodologies. Secondly, it aims to extend the boundaries of knowledge in edge-computing technology by conducting a rigorous analysis of terrain data and its implications on flight path optimization along with communication with ground stations. The study employs a combination of simulation-based experimentation and algorithmic computations. Through strategic intervals along the flight path, critical parameters such as distance, altitude profiles, and flight path angles are dynamically assessed. Additionally, edge computing techniques enhance data processing speeds, ensuring adaptability to various scenarios. This paper challenges existing paradigms in flight management and opens avenues for further research in integrating edge computing within aviation technology. The findings presented herein carry significant implications for the aviation industry, ranging from improved operational efficiency to heightened safety measures.

A Hierarchical Block Matching Algorithm Based on Camera Panning Compensation (카메라 패닝 보상에 기반한 계층적 블록 정합 알고리즘)

  • Gwak, No-Yun;Hwang, Byeong-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2271-2280
    • /
    • 1999
  • In this paper, a variable motion estimation scheme based on HBMA(Hierarchical Block Matching Algorithm) to improve the performance and to reduce heavy computational and transmission load, is presented. The proposed algorithm is composed of four steps. First, block activity for each block is defined using the edge information of differential image between two sequential images, and then average block activity of the present image is found by taking the mean of block activity. Secondly, camera pan compensation is carried out, according to the average activity of the image, in the hierarchical pyramid structure constructed by wavelet transform. Next, the LUT classifying each block into one among Moving, No Moving, Semi-Moving Block according to the block activity compensated camera pan is obtained. Finally, as varying the block size and adaptively selecting the initial search layer and the search range referring to LUT, the proposed variable HBMA can effectively carries out fast motion estimation in the hierarchical pyramid structure. The cost function needed above-mentioned each step is only the block activity defined by the edge information of the differential image in the sequential images.

  • PDF

Study of Deep Reinforcement Learning-Based Agents for Controlled Flight into Terrain (CFIT) Autonomous Avoidance (CFIT 자율 회피를 위한 심층강화학습 기반 에이전트 연구)

  • Lee, Yong Won;Yoo, Jae Leame
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.34-43
    • /
    • 2022
  • In Efforts to prevent CFIT accidents so far, have been emphasizing various education measures to minimize the occurrence of human errors, as well as enforcement measures. However, current engineering measures remain in a system (TAWS) that gives warnings before colliding with ground or obstacles, and even actual automatic avoidance maneuvers are not implemented, which has limitations that cannot prevent accidents caused by human error. Currently, various attempts are being made to apply machine learning-based artificial intelligence agent technologies to the aviation safety field. In this paper, we propose a deep reinforcement learning-based artificial intelligence agent that can recognize CFIT situations and control aircraft to avoid them in the simulation environment. It also describes the composition of the learning environment, process, and results, and finally the experimental results using the learned agent. In the future, if the results of this study are expanded to learn the horizontal and vertical terrain radar detection information and camera image information of radar in addition to the terrain database, it is expected that it will become an agent capable of performing more robust CFIT autonomous avoidance.

Development of Image Transmission and Receiving System for UAV (무인항공기 체계의 영상송수신장비 개발)

  • Kim, Sang-Han;Jo, Seong-Jun;Baek, Yun-Hyeok;Lee, Jae-Nyeong;Jeong, Suk-Hyang;Mun, U-Geun;Bae, Jin-Geun;Park, Dae-Seop
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.275-278
    • /
    • 2004
  • In this paper, development of the Image Transmission and Receiving System(ITRS) for UAV is being introduced. ITRS can tranfer the imagery informations from UAV to the multiple sites at the same time. Analog video signal is encoded by using MPEG4 protocol at the Image Transmission System, and the encoded digital video data can be transmitted to the various locations where the Image Receiving System decodes and displays the received video data. The ITRS might be a very efficient method of sharing UAV's information at a low cost.

  • PDF

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

Anomaly Detections Model of Aviation System by CNN (합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구)

  • Hyun-Jae Im;Tae-Rim Kim;Jong-Gyu Song;Bum-Su Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • Recently, Urban Aircraft Mobility (UAM) has been attracting attention as a transportation system of the future, and small drones also play a role in various industries. The failure of various types of aviation systems can lead to crashes, which can result in significant property damage or loss of life. In the defense industry, where aviation systems are widely used, the failure of aviation systems can lead to mission failure. Therefore, this study proposes an anomaly detection model using deep learning technology to detect anomalies in aviation systems to improve the reliability of development and production, and prevent accidents during operation. As training and evaluating data sets, current data from aviation systems in an extremely low-temperature environment was utilized, and a deep learning network was implemented using the convolutional neural network, which is a deep learning technique that is commonly used for image recognition. In an extremely low-temperature environment, various types of failure occurred in the system's internal sensors and components, and singular points in current data were observed. As a result of training and evaluating the model using current data in the case of system failure and normal, it was confirmed that the abnormality was detected with a recall of 98 % or more.

The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information (컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적)

  • Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.

Quantitative Analysis of C. elegans Mutant Type Using Movement and Reversal Features

  • Nah Won;Baek Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.417-420
    • /
    • 2004
  • Caenorhabditis (C) elegans is often used in genetic analysis in neuroscience because its simple organism; an adult hermaphrodite contains only 302 neuron. So the worm is often used to study of cancer, alzheimer disease, aging, etc. To analysis mutant type of the worm, an experienced observer was able to subjectively before, but requirements for objective analysis are now increasing. For this reason, we use automated tracking systems to extract global movement coordinate of the worm. In this paper, we extract features, which are related on reversal and movement of the worm. Using these features, we quantitatively analysis 6 type mutant by movement and reversal characteristic.

  • PDF

An Exploratory Study on the Customer Satisfaction of e-Ticket Process (항공사 e-티켓 이용에 대한 고객 만족에 관한 탐색적 연구)

  • Yoo, Yong-Jae;Park, Jong-Gi;Lee, Seung-Chang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.40-50
    • /
    • 2006
  • This study investigates how airline customers evaluate e-ticket process newly adopted by many of airlines. Customers are highly satisfied with the easy of confirmation on their itineraries and the channel provided through while they are worry about the likelihood of leakage of personal information during e-ticket process. Highly experienced customers on the usage of e-ticket are more concerned about ancillary aspects such as visual image of I.T.R(Itinerary and Receipt) and travel information than functional aspect such as easy of confirmation on itinerary. And also experienced customers are more likely to repurchase e-ticket and when purchasing tickets they do it through internet and call center of airlines rather than travel agencies and ticket office of airlines.

  • PDF