• Title/Summary/Keyword: Avian influenza viruses

Search Result 60, Processing Time 0.026 seconds

Comparative Study of the Nucleotide Bias Between the Novel H1N1 and H5N1 Subtypes of Influenza A Viruses Using Bioinformatics Techniques

  • Ahn, In-Sung;Son, Hyeon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Novel influenza A (H1N1) is a newly emerged flu virus that was first detected in April 2009. Unlike the avian influenza (H5N1), this virus has been known to be able to spread from human to human directly. Although it is uncertain how severe this novel H1N1 virus will be in terms of human illness, the illness may be more widespread because most people will not have immunity to it. In this study, we compared the codon usage bias between the novel H1N1 influenza A viruses and other viruses such as H1N1 and H5N1 subtypes to investigate the genomic patterns of novel influenza A (H1N1). Totally, 1,675 nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A virus, including H1N1 and H5N1 subtypes occurring from 2004 to 2009, were used. As a result, we found that the novel H1N1 influenza A viruses showed the most close correlations with the swine-origin H1N1 subtypes than other H1N1 viruses, in the result from not only the analysis of nucleotide compositions, but also the phylogenetic analysis. Although the genetic sequences of novel H1N1 subtypes were not exactly the same as the other H1N1 subtypes, the HA and NA genes of novel H1N1s showed very similar codon usage patterns with other H1N1 subtypes, especially with the swine-origin H1N1 influenza A viruses. Our findings strongly suggested that those novel H1N1 viruses seemed to be originated from the swine-host H1N1 viruses in terms of the codon usage patterns.

Development of Multiplex RT-PCR Assays for Rapid Detection and Subtyping of Influenza Type A Viruses from Clinical Specimens

  • Chang, Hee-Kyoung;Park, Jeung-Hyun;Song, Min-Suk;Oh, Taek-Kyu;Kim, Seok-Young;Kim, Chul-Jung;Kim, Hyung-Gee;Sung, Moon-Hee;Han, Heon-Seok;Hahn, Youn-Soo;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1164-1169
    • /
    • 2008
  • We developed multiplex RT-PCR assays that can detect and identify 12 hemagglutinin (H1-H12) and 9 neuraminidase (N1-N9) subtypes that are commonly isolated from avian, swine, and human influenza A viruses. RT-PCR products with unique sizes characteristic of each subtype were amplified by multiplex RT-PCRs, and sequence analysis of each amplicon was demonstrated to be specific for each subtype with 24 reference viruses. The specificity was demonstrated further with DNA or cDNA templates from 7 viruses, 5 bacteria, and 50 influenza A virus-negative specimens. Furthermore, the assays could detect and subtype up to $10^5$ dilution of each of the reference viruses that had an original infectivity titer of $10^6\;EID_{50}/ml$. Of 188 virus isolates, the multiplex RT-PCR results agreed completely with individual RT-PCR subtyping results and with results obtained from virus isolations. Furthermore, the multiplex RT-PCR methods efficiently detected mixed infections with at least two different subtypes of influenza viruses in one host. Therefore, these methods could facilitate rapid and accurate subtyping of influenza A viruses directly from field specimens.

Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild, domestic birds in Xinjiang, Northwest China

  • Zhang, Qian;Mei, Xindi;Zhang, Cheng;Li, Juan;Chang, Nana;Aji, Dilihuma;Shi, Weifeng;Bi, Yuhai;Ma, Zhenghai
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.43.1-43.10
    • /
    • 2021
  • Background: The H5 avian influenza viruses (AIVs) of clade 2.3.4.4 circulate in wild and domestic birds worldwide. In 2017, nine strains of H5N6 AIVs were isolated from aquatic poultry in Xinjiang, Northwest China. Objectives: This study aimed to analyze the origin, reassortment, and mutations of the AIV isolates. Methods: AIVs were isolated from oropharyngeal and cloacal swabs of poultry. Identification was accomplished by inoculating isolates into embryonated chicken eggs and performing hemagglutination tests and reverse transcription polymerase chain reaction (RT-PCR). The viral genomes were amplified with RT-PCR and then sequenced. The sequence alignment, phylogenetic, and molecular characteristic analyses were performed by using bioinformatic software. Results: Nine isolates originated from the same ancestor. The viral HA gene belonged to clade 2.3.4.4B, while the NA gene had a close phylogenetic relationship with the 2.3.4.4C H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated from shoveler ducks in Ningxia in 2015. The NP gene was grouped into an independent subcluster within the 2.3.4.4B H5N8 AIVs, and the remaining six genes all had close phylogenetic relationships with the 2.3.4.4B H5N8 HPAIVs isolated from the wild birds in China, Egypt, Uganda, Cameroon, and India in 2016-2017, Multiple basic amino acid residues associated with HPAIVs were located adjacent to the cleavage site of the HA protein. The nine isolates comprised reassortant 2.3.4.4B HPAIVs originating from 2.3.4.4B H5N8 and 2.3.4.4C H5N6 viruses in wild birds. Conclusions: These results suggest that the Northern Tianshan Mountain wetlands in Xinjiang may have a key role in AIVs disseminating from Central China to the Eurasian continent and East African.

Inferring transmission routes of avian influenza during the H5N8 outbreak of South Korea in 2014 using epidemiological and genetic data (역학과 유전학적 데이터를 이용한 한국에서 2014년 발생한 H5N8 조류독감 전염경로의 유추)

  • Choi, Sang Chul
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.254-265
    • /
    • 2018
  • Avian influenza recently damaged the poultry industry, which suffered a huge economic loss reaching billions of U.S. dollars in South Korea. Transmission routes of the pathogens would help plan to control and limit the spread of the devastating biological tragedy. Phylogenetic analyses of pathogen's DNA sequences could sketch transmission trees relating hosts with directed edges. The last decade has seen the methodological development of inferring transmission trees using epidemiological as well as genetic data. Here, I reanalyzed the DNA sequence data that had originated in the highly pathogenic avian influenza H5N8 outbreak of South Korea in 2014. The H5N8 viruses spread geographically contiguously from the origin of the outbreak, Jeonbuk. The Jeonbuk origin viruses were known to spread to four provinces neighboring Jeonbuk. I estimated the transmission tree of the host domestic and migratory wild birds after combining multiple runs of Markov chain Monte Carlo using a Bayesian method for inferring transmission trees. The estimated transmission tree, albeit with a rather large uncertainty in the directed edges, showed that the viruses spread from Jeonbuk through Chungnam to Gyeonggi. Domestic birds of breeder or broiler ducks were estimated to appear to be at the terminal nodes of the transmission tree. This observation confirmed that migratory wild birds played an important role as one of the main infection mediators in the avian influenza H5N8 outbreak of South Korea in 2014.

Surveillance and molecular epidemiology of avian influenza viruses from birds in zoos, backyard flocks and live bird markets in Korea

  • Jang, Jin-Wook;Kim, Il-Hwan;Kwon, Hyuk-Joon;Hong, Seung-Min;Kim, Jae-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.239-252
    • /
    • 2012
  • The circulation and infection of avian influenza virus (AIV) in zoos and backyard flocks has not been systematically investigated. In the present study, we surveyed the birds including those in live bird markets (LBMs) and evaluated co-circulation of AIVs among them. Overall, 26 H9N2 AIVs and one H6N2 AIV were isolated from backyard flocks and LBMs, but no AIVs were isolated from zoo birds. Genetic analysis of the HA and NA genes indicated that most of the H9N2 AIVs showed higher similarities to AIVs circulating in domestic poultry than to those in wild birds, while the H6N2 AIV isolate from an LBM did to AIVs circulating in migratory wild birds. In serological tests, 15% (391/2619) of the collected sera tested positive for AIVs by competitive-ELISA. Among them, 34% (131/391) of the sera tested positive for AIV H9 antigen by HI test, but only one zoo sample was H9 positive. Although AIVs were not isolated from zoo birds, the serological results indicated that infection of AIVs might occur in zoos. It was also confirmed that H9N2 AIVs continue to circulate and evolve between backyard flocks and LBMs. Therefore, continuous surveillance and monitoring of these flocks should be conducted to control further epidemics.

Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor

  • Kim, Shin-Ae;Kim, Sung-June;Lee, Sang-Hun;Park, Tai-Hyun;Byun, Kyung-Min;Kim, Sung-Guk;Shuler, Michael L.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.392-397
    • /
    • 2009
  • We designed a wavelength interrogation-based surface plasmon resonance (SPR) biosensor to detect avian influenza DNA (AI-DNA). Hybridization reactions between target AI-DNA probes and capture probes immobilized on a gold surface were monitored quantitatively by measuring the resonance wavelength in the visible waveband. The experimental results were consistent with numerical calculations. Although the SPR detection technique does not require the DNA to be labeled, we also evaluated fluorescently-labeled targets to verify the hybridization behavior of the AI-DNA. Changes in resonance were found to be linearly proportional to the amount of bound analyte. A wavelength interrogation-type SPR biosensor can be used for rapid measurement and high-throughput detection of highly pathogenic AI viruses.

Establishment of optimal disinfection condition of weak acid hypochlorous solution for prevention of avian influenza and foot-and-mouth disease virus transmission (조류 인플루엔자와 구제역 바이러스 차단방역을 위한 미산성 차아염소산수의 소독 조건)

  • Kim, Jin-Yoon;Yun, Dong-Sik;Lee, Haw-Yong;Jeong, Woo-Seog;Park, Seung-Chun
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.101-104
    • /
    • 2019
  • This study examined the disinfection conditions (exposure time, 0-30 min; exposure temperature, $4^{\circ}C-65^{\circ}C$) of hypochlorous acid water (HOCl) in automobile disinfection equipment. The study tested poliovirus type 1 (PV1), low pathogenic avian influenza virus (AIV, H9N2), and foot and mouth disease virus (FMDV, O type). As a result, the PV1 and FMD viruses were inactivated easily (virus titer 4 log value) by HOCl (> 100 ppm) but the AIV required higher exposure temperatures (> $55^{\circ}C$). In conclusion, the exposure temperature and time are important factors in deactivating AIV and FMDV.

Genetic diversity of the H5N1 viruses in live bird markets, Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Hewajuli, Dyah Ayu;Ratnawati, Atik;Hartawan, Risza
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.56.1-56.13
    • /
    • 2020
  • Background: The live bird market (LBM) plays an important role in the dynamic evolution of the avian influenza H5N1 virus. Objectives: The main objective of this study was to monitor the genetic diversity of the H5N1 viruses in LBMs in Indonesia. Methods: Therefore, the disease surveillance was conducted in the area of Banten, West Java, Central Java, East Java, and Jakarta Province, Indonesia from 2014 to 2019. Subsequently, the genetic characterization of the H5N1 viruses was performed by sequencing all 8 segments of the viral genome. Results: As a result, the H5N1 viruses were detected in most of LBMs in both bird' cloacal and environmental samples, in which about 35% of all samples were positive for influenza A and, subsequently, about 52% of these samples were positive for H5 subtyping. Based on the genetic analyses of 14 viruses isolated from LBMs, genetic diversities of the H5N1 viruses were identified including clades 2.1.3 and 2.3.2 as typical predominant groups as well as reassortant viruses between these 2 clades. Conclusions: As a consequence, zoonotic transmission to humans in the market could be occurred from the exposure of infected birds and/or contaminated environments. Moreover, new virus variants could emerge from the LBM environment. Therefore, improving pandemic preparedness raised great concerns related to the zoonotic aspect of new influenza variants because of its high adaptivity and efficiency for human infection.

Antiviral Effects of Titanium Dioxide Photocatalyst Treated Films against Highly Pathogenic Avian Influenza (고병원성 조류인플루엔자(H5N1)에 대한 이산화티타늄 광촉매 처리 필름의 항바이러스성 연구)

  • Lee, Sang-Do;Park, Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.201-206
    • /
    • 2021
  • Damage to the highly pathogenic avian influenza virus(H5N1) continues to increase, but there is a lack of antiviral research. In this study, we analyze antiviral properties on H5N1 by coating Cu/TiO2 photocatalyst on polyethylene films. The specimen was manufactured a photocatalyst master batch and coated both sides of the 3-layer polyethylene fabric at 280℃ from the extrusion coating machine. The results showed a 99.9% decrease in the Staphylococcus aureus and Escherichia coli. In particular, H5N1 type highly pathogenic avian influenza viruses, which is capable of human infection, has been found to decrease 99.9% within five minutes of contact with Cu/TiO2 films. Antibacterial effects of films coated with photocatalyst are known, but this study also confirmed the antiviral effects.

Evolution and international transmission of H3N2 canine influenza A viruses from Korea during 2014-2017

  • Chung-Young Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.78.1-78.6
    • /
    • 2023
  • Avian-origin H3N2 canine influenza A viruses (CIVs) have become enzootic in China and Korea and have sporadically transmitted to North America, causing multiple epidemics. We isolated six CIVs in Korea from CIV-infected patients during 2014-2017 and conducted whole genome sequencing and phylogenetic analyses. Results revealed that CIVs have circulated and evolved in Korea since the early 2000s and then diversified into a new clade, probably contributing to multiple epidemics in China, the USA, and Canada. Our findings bridge an evolutionary gap for understanding the global transmission of CIVs, emphasizing the significance of continuous monitoring of CIVs.