• Title/Summary/Keyword: Avian Influenza Virus

Search Result 127, Processing Time 0.024 seconds

Application of Species Distribution Model for Predicting Areas at Risk of Highly Pathogenic Avian Influenza in the Republic of Korea (종 분포 모형을 이용한 국내 고병원성 조류인플루엔자 발생 위험지역 추정)

  • Kim, Euttm;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • While research findings suggest that the highly pathogenic avian influenza (HPAI) is the leading cause of economic loss in Korean poultry industry with an estimated cumulative impact of $909 million since 2003, identifying the environmental and anthropogenic risk factors involved remains a challenge. The objective of this study was to identify areas at high risk for potential HPAI outbreaks according to the likelihood of HPAI virus detection in wild birds. This study integrates spatial information regarding HPAI surveillance with relevant demographic and environmental factors collected between 2003 and 2018. The Maximum Entropy (Maxent) species distribution modeling with presence-only data was used to model the spatial risk of HPAI virus. We used historical data on HPAI occurrence in wild birds during the period 2003-2018, collected by the National Quarantine Inspection Agency of Korea. The database contains a total of 1,065 HPAI cases (farms) tied to 168 unique locations for wild birds. Among the environmental variables, the most effective predictors of the potential distribution of HPAI in wild birds were (in order of importance) altitude, number of HPAI outbreaks at farm-level, daily amount of manure processed and number of wild birds migrated into Korea. The area under the receiver operating characteristic curve for the 10 Maxent replicate runs of the model with twelve variables was 0.855 with a standard deviation of 0.012 which indicates that the model performance was excellent. Results revealed that geographic area at risk of HPAI is heterogeneously distributed throughout the country with higher likelihood in the west and coastal areas. The results may help biosecurity authority to design risk-based surveillance and implementation of control interventions optimized for the areas at highest risk of HPAI outbreak potentials.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

Genetic diversity of the H5N1 viruses in live bird markets, Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Hewajuli, Dyah Ayu;Ratnawati, Atik;Hartawan, Risza
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.56.1-56.13
    • /
    • 2020
  • Background: The live bird market (LBM) plays an important role in the dynamic evolution of the avian influenza H5N1 virus. Objectives: The main objective of this study was to monitor the genetic diversity of the H5N1 viruses in LBMs in Indonesia. Methods: Therefore, the disease surveillance was conducted in the area of Banten, West Java, Central Java, East Java, and Jakarta Province, Indonesia from 2014 to 2019. Subsequently, the genetic characterization of the H5N1 viruses was performed by sequencing all 8 segments of the viral genome. Results: As a result, the H5N1 viruses were detected in most of LBMs in both bird' cloacal and environmental samples, in which about 35% of all samples were positive for influenza A and, subsequently, about 52% of these samples were positive for H5 subtyping. Based on the genetic analyses of 14 viruses isolated from LBMs, genetic diversities of the H5N1 viruses were identified including clades 2.1.3 and 2.3.2 as typical predominant groups as well as reassortant viruses between these 2 clades. Conclusions: As a consequence, zoonotic transmission to humans in the market could be occurred from the exposure of infected birds and/or contaminated environments. Moreover, new virus variants could emerge from the LBM environment. Therefore, improving pandemic preparedness raised great concerns related to the zoonotic aspect of new influenza variants because of its high adaptivity and efficiency for human infection.

Monitoring of Major Viral Pathogen Contamination in New and Reused Broiler Farm Litter (육계 농장 깔짚에서의 주요 바이러스 병원체 오염 실태 조사)

  • Choi, Kang-Seuk;Jeon, Woo-Jin;Lee, Eun-Kyoung;Kwon, Jun-Hun;Lee, Jin-Hwa;Sung, Haan-Woo
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.181-189
    • /
    • 2011
  • A 5-month (May to November in 2009) monitoring program for five viral pathogens in litter, such as avian influenza virus A (AIV), infectious bronchitis virus (IBV), infectious bursal disease virus (IBDV), fowl adenovirus (FAdV), and chicken infectious anemia virus (CIAV) was conducted in 62 flocks at 31 broiler farms (two flocks in each farm) in Korea in 2009. Viral pathogens were examined twice (before and at the end of the rearing period) at 31 broiler farms, and included fresh litter (n = 16) and recycled litter (n = 15) farms. Thirty-seven viruses (14 IBVs, 2 IBDVs, 9 FAdVs, and 12 CIAVs) were isolated from 75% (12/16) and 73% (11/15) of fresh litter and reused litter farms during the period, respectively, indicating no difference in viral contamination rate between farms using new and reused litter. Of these isolates, three (two CIAVs and one IBDV) were isolated from recycled litter samples collected before the rearing period at three broiler farms, whereas the others (n=34) were isolated from fresh and recycled litter samples collected at the end of the rearing period. When the performances, involving viability, body weight, and feed conversion ratio, were compared, no significant differences were found between farms using fresh and recycled litter during the period.

One Health Perspectives on Emerging Public Health Threats

  • Ryu, Sukhyun;Kim, Bryan Inho;Lim, Jun-Sik;Tan, Cheng Siang;Chun, Byung Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.50 no.6
    • /
    • pp.411-414
    • /
    • 2017
  • Antimicrobial resistance and emerging infectious diseases, including avian influenza, Ebola virus disease, and Zika virus disease have significantly affected humankind in recent years. In the premodern era, no distinction was made between animal and human medicine. However, as medical science developed, the gap between human and animal science grew deeper. Cooperation among human, animal, and environmental sciences to combat emerging public health threats has become an important issue under the One Health Initiative. Herein, we presented the history of One Health, reviewed current public health threats, and suggested opportunities for the field of public health through better understanding of the One Health paradigm.

First detection of a G1-like H9N2 virus in Russia, 2018

  • Sharshov, Kirill;Kurskaya, Olga;Sobolev, Ivan;Leonov, Sergey;Kabilov, Marsel;Tatyana, Alikina;Alekseev, Alexander;Derko, Anastasiya;Yushkov, Yuriy;Saito, Takehiko;Uchida, Yuko;Mine, Junki;Irza, Victor;Shestopalov, Alexander
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Worldwide, avian influenza H9N2 viruses of different lineages are the most widespread viruses in poultry. However, to date, cases in Russia have not been documented. In this study, we report the first detection of a G1-like H9N2 virus from poultry sampled at live-bird markets in Russia (Far East region) during the winter of 2018 (isolate A/chicken/Amur_Russia/17/2018). We assume there has been further circulation of the A/chicken/Amur_Russia/17/2018 H9N2 virus in the Russian Far East with possible distribution to other regions or countries in 2018-2019.

Epidemiological Studies of Avian Paramyxovirus Type 4 and 6 in Commercial Chicken Flocks in Korea

  • Lee, Hae Rim;Koo, Bon-Sang;Jeon, Eun-Ok;Han, Moo-Sung;Min, Kyung-Cheol;Lee, Seung Baek;Bae, Yeonji;Choi, Kang-Seuk;Shin, Jeong-Hwa;Mo, In-Pil
    • Korean Journal of Poultry Science
    • /
    • v.40 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • Avian paramyxovirus (APMV) type 4 and 6 were isolated during an avian influenza (AI) surveillance program of wild birds. This study also conducted experimental infection of wild-bird-origin APMV type 4 and 6 in specific pathogen free (SPF) chickens to study pathogenicity and transmission within domestic flocks. In addition, serological prevalence data of APMV type 4 and 6 in domestic fowls was conducted with chicken sera collected from 2007 to 2009 in order to understand infection status. The results of the animal experiment showed that APMV type 4 and 6 had the ability to infect chickens with sero-conversion and to transmit the virus from infected birds to contacted birds, but showed low pathogenicity. Serological tests revealed that APMV type 4 was widespread in the poultry industry, especially in layer flocks, but the positive rate for APMV type 6 was very low. This study concluded that wild bird-origin APMV type 4 and 6 could infect the chickens by inter-species transmission and the seroprevalence of APMV type 4 was quite high in Korean poultry. However, since almost all the chicken flocks had a high level of antibody titer against APMV type 1, there was possibility of cross reaction between APMV type 1 and 4, which made the interpretations more complicated. In order to understand infection status in the natural environment, additional study is necessary regarding the seroprevalence of APMV type 4 and 6 in the wild bird population.

The outbreaks and counterplan of highly pathogenic avian influenza in Korea and overseas (국내.외 조류인플루엔자(HPAI) 발생현황과 대응방안)

  • Jang, Hyung-Kwan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.220-227
    • /
    • 2009
  • For last about 10 years, the Republic of Korea experienced 3 times of outbreaks of highly pathogenic avian influenza (HPAI) from 10 December 2003 to 30 April 2004 (a total number of 19 outbreaks), 22 November 2006 to 6 March 2007 (a total number of 7 outbreaks), and 1 April 2008 to 12 May 2008 (a total number of 33 outbreaks). Among the totally 59 outbreaks, the infected premises included 35 chicken farms, 17 duck farms, 1 quail farm, and 6 farms rearing mixed species. Control measures were applied according to the HPAI standard operation procedure including depopulation of all infected and suspected flocks, movement restrictions, and disinfection of the infected farms within a 500-meter radius. Including movement restrictions, stringent control measures were additionally applied to two designated zones: the protection zone was an area within a 3-kilometer radius of the outbreak farm, and the surveillance zone was an area between a 3- to 10-kilometer radius of the outbreak farm. Farms with dangerous contacts and/or all of poultry within the protection zone was subjected to preemptive culling. Epidemiological investigations were also carried out including trace-back and trace-forward investigations to identify possible sources of spread and dangerous contact farms. Investigation teams conducted on-site examination of farm premises and facilities, interview with farm owner and staff, and review of records. Genetic and pathogenic characteristics of the virus isolates, and the results of the various surveillance activities were also analyzed. HPAI surveillance conducted in Korea includes passive surveillance of investigating notified cases, and active surveillance of testing high risk groups and areas. HPAI is a notifiable disease in Korea and all suspect cases must be reported to the veterinary authorities. Cases reported for other poultry diseases that require differential diagnosis are also tested for HPAI. Active surveillance includes annual testing of breeder duck farms, broiler duck farms and wild bird surveillance, which is concentrated during the autumn and winter. Surveillance activities conducted prior to the outbreaks have shown no evidence of HPAI infection in Korea.

  • PDF

Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM (LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측)

  • Choi, Dae-Woo;Lee, Won-Been;Song, Yu-Han;Kang, Tae-Hun;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and in based on artificial intelligence-based HPAI spread analysis and patterning. The model that is actively used in time series and text mining recently is LSTM (Long Short-Term Memory Models) model utilizing deep learning model structure. The LSTM model is a model that emerged to resolve the Long-Term Dependency Problem that occurs during the Backpropagation Through Time (BPTT) process of RNN. LSTM models have resolved the problem of forecasting very well using variable sequence data, and are still widely used.In this paper study, we used the data of the Call Detailed Record (CDR) provided by KT to identify the migration path of people who are expected to be closely related to the virus. Introduce the results of predicting the path of movement by learning the LSTM model using the path of the person concerned. The results of this study could be used to predict the route of HPAI propagation and to select routes or areas to focus on quarantine and to reduce HPAI spread.