• Title/Summary/Keyword: Averaging

Search Result 1,388, Processing Time 0.026 seconds

Effect of Feed Type on Feed Efficiency and Carcass Characteristics of Hanwoo Steers (사료의 형태가 한우 거세우의 사료효율 및 도체성적에 미치는 영향)

  • Lee, Gui-Ye;Cho, Woong-Gi;Moon, Yea-Hwang
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.95-103
    • /
    • 2011
  • Ninety five Hanwoo steers averaging 226kg of body weight were used to investigate the effect of dietary type on feed efficiency, carcass characteristics and economical analysis in Hanwoo feeding over 22 months. Treatments were composed of commercial formula feed (formula feed), TMR and Fermented-TMR (F-TMR). Intakes of dry matter and TDN were greater in the F-TMR than the other treatments during each growing and fattening phase (p<0.05). Although daily body gain of the F-TMR was lowest during the growing phase, but was 48% greater than those of other treatment during the finishing phase (p<0.05). Feed efficiency of the F-TMR was maintained constantly during whole growing and fattening phases. Carcass weight and rib-eye area of the F-TMR were greatest (p<0.05) among treatments. However, meat yield index and the rate of grade A in meat yield were highest in the formula feed having the thinnest back fat. Marbling score was hugely (p<0.05) increased when steers fed F-TMR, and therateofgrade 1+andoverinmeatqualitywas96%intheF-TMR. Although feed cost in the F-TMR was increased by 40% compare to the formula feed, but net income was increased by 29% due to improvement of meat quality and body gain.

The Structural Safety Diagnosis of Three-Story Pagoda in Bulkuk Temple Using the Probability of Failure. (암석의 파괴 확률 분석을 통한 불국사 삼층석탑 구조 안전 진단)

  • Seo, Man-Cheol;Song, In-Seon;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Three-Story Pagoda(Seokga Pagoda) in Bulkuk temple in the city of Kyungju, Kyungbuk, Korea. Ultrasonic wave velocities were measured at 456 points of the pagoda comprising 44 blocks to estimate the mechanical properties of rock blocks constituting the pagoda. The measured velocities have the range of 1217 to 4403 m/sec with the average of 3227 m/sec. The empirical relationship between the ultrasonic velocity and the uniaxial compressive strength yielded the estimation of strength of each block, ranging from 134 to 844 kg/cm^2 and averaging 463 kg/cm^2. With an assumption that the strength of each block is described as a random variables having a normal distribution, we calculated the probability of failure of rock blocks of the pagoda. Our investigation revealed that the probability of the structural failure due to the weight of higher blocks is very low. However, the probability of partial failure around contact area is substantial, which is consistent with the appearance that edges and the corners of some blocks were broken off. The platform under the body of the pagoda appeared to be structurally weak as the probability of tensile failure of the lower platform is up to 18%, and diagonal fractures are shown where the probability of failure is high.

  • PDF

Vegetation Classification, Species Diversity, and Structural Characteristics of Coniferous Forest in Baekdudaegan Protected Area, Korea (백두대간 보호지역 침엽수림의 식생분류, 종다양성 및 구조적 특성)

  • Cho, Hyun-Je;Kim, Jun-Soo;Cho, Joon-Hee;Oh, Seung-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.516-529
    • /
    • 2021
  • Coniferous forests in the Baekdudaegan protected area are gradually losing their landscape diversity and uniqueness along with their ecological stability due to changes in vegetation composition and structures caused by various disturbance factors, such as climate change, vegetation succession, and human interference. This study provides basic data for establishing a comprehensive conservation plan for coniferous forests in the Baekdudaegan protected area. We classified the vegetation unit types using the Zurich-Montpellier School of Phytosociology and two-way indicator species analysis methods and analyzed the species diversity and structural characteristics based on the vegetation information of 755 stands collected in the natural resources change survey of the Baekdudaegan mountains (2016 to 2020) by the Korea Forest Service. Therefore, the vegetation of the coniferous forests of theBaekdudaegan protected area was classified into 15 types under the vegetation unit hierarchy of two community groups, four communities, seven sub-communities, and 14 variants. Furthermore, we compared the total coverage among vegetation types, importance values, constancy classes, life-forms, and diversity indices. Additionally, the average total coverage and number of species per 100 m2 of all coniferous forests were 232% and 21 species, respectively, with the species diversity and dominance indices averaging 1.907 and 0.222, respectively.

The Characteristics of Driving Parameters and CO2 Emissions of Light-Duty Vehicles in Real-Driving Conditions at Urban Area in Seoul (서울 도심의 실제 도로 주행 조건에서 소형자동차의 주행인자와 CO2 배출 특성에 관한 연구)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Ahn, Keunhwan
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.359-369
    • /
    • 2013
  • In this paper, correlations between driving parameters and $CO_2$ of light-duty vehicles have been analyzed. Three test vehicles equipped with PEMS (Portable Emission Measurement System) have been driven in real-road in urban areas of Seoul. Averaged vehicle speed, RPA(Relative Positive Acceleration) and stop ratio have been selected as main driving parameters. The analysis have been conducted in interrupted and uninterrupted road types. Averaged values in various driving conditions have been calculated with distance based moving averaging window method. The multiple linear regression method have been applied to account for correlation between driving parameters and $CO_2$ emissions. This approach has shown statistically that $CO_2$ emission per distance (g/km) have tendencies to be increased as decreased averaged vehicle speed and increased RPA and stop ratio. Compared with uninterrupted traffic, interrupted traffic have shown the lower vehicle speed and the higher RPA and stop ratio. These characteristics of driving parameters in interrupted traffic should cause the higher $CO_2$ emission per distance.

Observation-based Analysis of Climate Change using Meteorological Data of Gangneung (기상 관측 자료를 이용한 강릉의 기후변화 추세 분석)

  • Lee, Jaeho;Baek, Hee-Jeong;Hyun, Yu-Kyung;Cho, Chunho
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • This study is to identify the trend of climate change in Gangwon-do by examining accumulated climate data such as temperature and precipitation in Gangneung city over the past about 100 years. The annual mean temperature and precipitation in Gangneung have increased by $1.4^{\circ}C$ and 14.7%, respectively, over the last 98 years (1912~2009). The trends of Gangneung showed that precipitation has intensified as the number of precipitation days decreased while its amount increased during the period. Based on the temperature data, spring and summer began earlier whereas the onsets of fall and winter were delayed. Summer has become longer and winter shorter by about a month. Averaging observation data from seven weather stations in Gangwon-do, the annual mean temperature and precipitation have increased by $0.8^{\circ}C$ and 21.0% respectively over the last 37 years (1973~2009). By region, Wonju city recorded the biggest increase of $1.6^{\circ}C$ in the annual mean temperature while Sokcho city the smallest increase of $0.4^{\circ}C$. In the annual mean precipitation, Daegwallweong recorded the biggest change of 22.2% and Wonju city the smallest of 12.0%.

Water resources potential assessment of ungauged catchments in Lake Tana Basin, Ethiopia

  • Damtew, Getachew Tegegne;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.217-217
    • /
    • 2015
  • The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.

  • PDF

Investigation of the change in physical habitat in the Geum-gang River by modifying dam operations to natural flow regime (자연유황 회복을 위한 댐 운영에 따른 금강의 물리서식처 변화 분석)

  • Choi, Byungwoong;Jang, Jiyeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.985-998
    • /
    • 2021
  • In general, the upstream dam changes downstream flow regime dramatically, i.e., from natural flow regime to hydropeaking flows. This study investigates the impact of the natural flow pattern on downstream fish habitat in a regulated river in Korea using the physical habitat simulation. The study area is a 13.4 km long reach of the Geum-gang River, located downstream from the Yongdam Dam, Korea. A field monitoring revealed that three fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, and Opsariichthys bidens, and they account for 70% of the total fish community. Specially, Opsariichthys bidens is an indigenous species in the Geum-gang River. The three fish species are selected as target fish species for the physical habitat simulation. The Nays2D model, a 2D shallow water equation solver, and the HSI (Habitat Suitability Index) model are used for hydraulic and habitat simulations, respectively. To assess the impact of the natural flow pattern, this study uses the annual natural flow regime and hydropeaking flows from the dam. It is found that the natural flow regime increases significantly the Composite Suitability Index (CSI) in the study reach. Then, using the Building Block Approach (BBA), the scenarios for the modifying dam operations are presented in the study reach. Both Scenario 1 and scenario 2 are proposed by using the hydrological method considering both magnitude and duration of the inflow and averaging the inflow over each month, respectively. It is revealed that the natural flow regime embodied in scenario 1 and scenario 2 increases the Weighted Usable Area (WUA) significantly, compared to the hydropeaking flows. In conclusion, the modifying the dam operations by restoring to the natural flow pattern is advantageous to fish community.

Machine-Learning Evaluation of Factors Influencing Landslides (머신러닝기법을 이용한 산사태 발생인자의 영향도 분석)

  • Park, Seong-Yong;Moon, Seong-Woo;Choi, Jaewan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.701-718
    • /
    • 2021
  • Geological field surveys and a series of laboratory tests were conducted to obtain data related to landslides in Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea where many landslides occurred in the summer of 2020. The magnitudes of various factors' influence on landslide occurrence were evaluated using logistic regression analysis and an artificial neural network. Undisturbed specimens were sampled according to landslide occurrence, and dynamic cone penetration testing measured the depth of the soil layer during geological field surveys. Laboratory tests were performed following the standards of ASTM International. To solve the problem of multicollinearity, the variation inflation factor was calculated for all factors related to landslides, and then nine factors (shear strength, lithology, saturated water content, specific gravity, hydraulic conductivity, USCS, slope angle, and elevation) were determined as influential factors for consideration by machine learning techniques. Minimum-maximum normalization compared factors directly with each other. Logistic regression analysis identified soil depth, slope angle, saturated water content, and shear strength as having the greatest influence (in that order) on the occurrence of landslides. Artificial neural network analysis ranked factors by greatest influence in the order of slope angle, soil depth, saturated water content, and shear strength. Arithmetically averaging the effectiveness of both analyses found slope angle, soil depth, saturated water content, and shear strength as the top four factors. The sum of their effectiveness was ~70%.

Analysis of Research Trends in Elder Abuse Using Text Mining : Academic Papers from 2004 to 2021. (텍스트 마이닝 분석을 통한 노인학대 관련 연구 동향 분석 : 2004년~2021년까지 발행된 국내 학술논문을 중심으로)

  • Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.4
    • /
    • pp.25-40
    • /
    • 2022
  • This study aimed to understand the increasing number of elder abuses in South Korea, where entry into the super-aged society is imminent, by implementing text mining analysis. Korean Academic journals were obtained from 2004, the establishment year of the senior care agency, to 2021. We performed natural language processing of the titles, keywords, and abstracts and divided them into three segments of periods to identify latent meanings in the data. The results illustrated that the first section included 81 papers, the second 64, and the third 104 respectively, averaging 13.8 annually, which increased its numbers from 2014 until the decrease below the annual average in 2020. Word frequency demonstrated that the common keywords of the entire segments were 'elder abuse,' 'elders,' 'influences,' 'factors,' 'recognition,' 'family,' 'society,' 'prevention plans,' 'experiences,' 'abused elders,' 'abuse prevention,' 'depression,' etc., in consecutive order. TF-IDF indicated that 'influences,' 'recognition,' 'society,' 'prevention plans,' 'abuse prevention,' 'experiences,' 'depression,' etc., were the common keywords of all divisions. Network text analysis displayed that the commonly represented keywords were 'elder abuse,' 'elders,' 'influences,' 'factors,' 'characteristics,' 'recognition,' 'family,' 'prevention plans,' 'society,' 'abuse prevention,' and 'experiences' in the entire sections. concor analysis presented that the first segment consisted of 5 groups, the second 7, and the third 6. We suggest future directions for elder abuse research based on the results.

Drought risk assessment considering regional socio-economic factors and water supply system (지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가)

  • Kim, Ji Eun;Kim, Min Ji;Choi, Sijung;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.589-601
    • /
    • 2022
  • Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.