• Title/Summary/Keyword: Averaged CT

Search Result 37, Processing Time 0.024 seconds

Comparison of Radiation Doses between 64-slice Single Source and 128-slice Dual Source CT Coronary Angiography in patient (64-slice single source CT와 128-slice dual source CT를 이용한 관상동맥 조영 검사 시 환자선량 비교)

  • Kang, Yeong-Han
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • The purpose of this study was to estimate radiation doses from 64-slice single source Computed Tomography(SSCT) coronary angiography(CA) and 128-slice dual source Computed Tomography(DSCT). With SSCT CA, the effective dose averaged approximately 13.86 mSv when two dose modulation was not. The mean effective dose for DSCT CA with retrospectively gated helical(RGH) technique was 11.87 mSv, when prospective ECG gating transverse(PGT) without dose modulation technique was 5.61 mSv. The one with dose modulation in PGT technique and flash mode were 3.04 mSv and flash mode was 0.98 mSv respectively. The lifetime attributable risk(LAR) of cancer incidence from SSCT RGH mode averaged approximately 1 for 1,176, and DSCT averaged 1 for 1,960(RGH mode), 1 for 3,030(PGT without modulation), 1 for 5,882(PGT with modulation). Because of CTCA is associated with non-negligible risk of cancer. Doses can be reduced by application PGT, FLASH than RGH using DSCT.

Chemical Structure Study on Copolyterephthalates Based on Ethylene Glycol and 1, 4-Cyclohexane Dimethanol by High Resolution NMR Analysis (고분해능 NMR 분석법에 의한 에틸렌글리콜과 1, 4-시클로헥산디메탄올의 테레프탈산 공중합체의 화학구조 연구)

  • Yoo, Hee-Yeoul;Kim, Sang-Wook;Okui, Norimasa
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.770-775
    • /
    • 1993
  • Chemical structure of poly(ethylene terephthalate-co-1, 4-cyclohexylene dimethylene terephthalate), P(ET-CT) copolyesters was investigated by High Resolution NMR analysis. The copolymer composition and isomeric ratio were determined by methylene resonance peaks which were separated into three peaks corresponding to ET, trans CT and cis CT units, respectively. The copolymer sequence distribution was evaluated from the carbon resonance peaks connected to carbonyl groups in benzene, indicating died distribution. According to statistics model, these copolyesters are almost random copolymers. The copolymer sequence distribution could be simulated and its averaged length was calculated by random copolymer statistics.

  • PDF

Comparison of SARs of Human Heads Exposed to Mobile Phone (이동통신단말기에 노출된 인체 두부에 따른 전자파 비흡수율 비교)

  • Lee, Ae-Gyeong;Choe, Hyeong-Do;Choe, Jae-Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.32-41
    • /
    • 2000
  • A new anatomical head model was implemented based on the MR and CT images of the head of a volunteer whose head shape is close to the domestic standard. In order to compare SARs (specific absorption rates) of heads with different shapes, we calculated SARs in the two anatomical head models. The one is the new model and the other is that of the black race and was made at National Library Medicine in USA. The head model and a phone model were arranged in the computational space to be the touch or cheek position of CENELEC (European Committee for Electrotechnical Standardisation) and FCC guidelines. From the obtained results, we can see that the smaller head produces the higher whole head-averaged SAR. However, it seems that the localized SAR averaged over 1 g or 10 g is more dependent on the shape of the auricle rather than that of the head size.

  • PDF

A Study on the exposure dose for the computed tomography (컴퓨터 단층촬영시 환자피폭선량에 관한 연구)

  • Kim, Moon-Chan;Lim, Jong-Suck;Park, Hyung-Ro;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to estimate absorbed radiation doses associated with CT examinations. We compared CT dose index between single detector CT and multi detector CT. To establish radiation dose criteria in CT examination in Korea, we measured radiation dose for CT examinations in Seoul and kyungki-do. The results obtained were as follows ; 1. Averaged CTDIW value per 100 mAs was $13.5{\pm}3.2\;mGy$, and ranged from 8.1 mGy to 19.1 mGy in head phantom, was $7.1{\pm}2.0\;mGy$, and ranged from 3.7 mGy to 10.9 mGy in body phantom. 2. CTDIW was 3.2 mGy(1.26 times) larger in multi detector CT than single detector CT in head phantom, and 2.1 mGy(1.34 times) larger in body phantom. 3. The dose was the highest in 4 channel multi detector CT, and followed 8 channel multi detector CT, 16 channel multi detector CT and single detector CT in head phantom. And the dose was the highest in 4 channel and 8 channel multi detector CT, and followed 16 channel multi detector CT and single detector CT in body phantom.

  • PDF

The Experimental Method of Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.285-291
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the inplane strain. Also, the effect of location where the displacement and strain are measured is explored.

  • PDF

An Experimental Method for Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

The Wearing Effect of Sport Underwear -Focusing on the Change of Fat in Each Body- (운동용 속옷의 착용효과 -부위별 체지방의 변화를 중심으로-)

  • 나미향;김미선;정복희
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.735-747
    • /
    • 2002
  • This study aimed at investigating the change of fat in each body part according to the wearing of sport underwear made of specially-processed materials. in this study. 6 females made up of three early twenties, and three later thirties took part in the exercises for 12 weeks to to out the change of fat amount in body, square of body part by CT and obesity after and before an exercise. The results are as follows: In the obesity condition after and before an exercise, Roller's index shows that in case of 51 and 54, one level was lowered concerning the basic physical strength and optimal index was not changed. In the silhouette between body frames. there are differences between ages. The body fat rate decreased 35.95% on the average. and the amount of the body fat of females in twenties was more than that in thirties. The amount of body fat decrease with the lapse of exercising time, while the amount of body fat shows increased of 0.75%, which showed the minus correlation. The rate of averaged flat by CT went up after an exercise in every body part. and also the decreased value of subcutaneous fat was not proportioned to that of weight and girth. Inbody parts, the lower abdomen was shown 49.7%, navel part 47.7% and waist part 37.3% each in numerical value. In the thickness of subcutaneous fat concerning waist, the value of front-center line was the lowest, and followed by rear-center line and lateral line. 1204degree part in the navel showed the most fat layed, and the lowest fat layed was in the lateral part. Concerning the lower part of abdomen, under-skin fat was the most layed in 120degree part like that of navel part.

  • PDF

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT

  • Wookon Son;MinWoo Kim;Jae-Yeon Hwang;Young-Woo Kim;Chankue Park;Ki Seok Choo;Tae Un Kim;Joo Yeon Jang
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods: Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results: The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion: For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.