• Title/Summary/Keyword: Average mode

Search Result 1,000, Processing Time 0.027 seconds

Modeling of the Sampling Effect in the P-Type Average Current Mode Control

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • This paper presents the modeling of the sampling effect in the p-type average current mode control. The prediction of the high frequency components near half of the switching frequency in the current loop gain is given for the p-type average current mode control. By the proposed model, the prediction accuracy is improved when compared to that of conventional models. The proposed method is applied to a buck converter, and then the measurement results are analyzed.

The Usefulness Analysis of Applying Dose Mode in Mammography Women of Childbearing Age (가임기 여성의 유방촬영에서 Dose mode 적용의 유용성 분석)

  • Lee, So-Ra;Son, Soon-Lyong;Chung, Jae-Yoen;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.19-23
    • /
    • 2013
  • Purpose : Automatic exposure system(AOP mode) in DR Mammography of the STD and DOSE apply to women of childbearing age, the average glandular dose(AGD) and image quality by comparing was to demonstrate the usefulness of DOSE. Materials and Methods : Of the under 40 age 108 patients who visit to our hospital and examined STD and DOSE mammography from January 2008 to July 2013. AGD was obtained by DICOM header information provided by GE Senographe DS. STD and DOSE images were evaluated with obtained patients, Image J program was compared by calculating the SNR. Results : The average AGD of DOSE mode was 0.99mGy, and which decreased by 19% comparing to that of STD mode which was 1.18mGy. The two the average AGDs indicated statistically significant difference(p< .01). The average SNR of STD was 40.26, DOSE displayed, and to 39.68 in, there was no statistical significance. Results : The average AGD using DOSE mode which is one of DR mammography AOP modes decreased by comparing to that of STD mode showing no difference in image quality. The use of DOSE is considered to be useful.

  • PDF

The Discontinuous Conduction Mode(DCM) Modeling of DC/DC Converter and Critical Characteristic using Average Model of Switch (스위치 평균 모델을 이용한 DC/DC 컨버터의 전류불연속모드 모델링과 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.34-43
    • /
    • 2008
  • The state-space average model is extended to buck-boost, and buck-boost topology switching mode DC/DC converters and modified to have higher precision without increment of computation. The modified model is used in continuous conduction mode(CCM) switching DC/DC converters and some significant conclusions are derived. This paper discusses the discontinuous conduction mode(DCM) modeling of DC/DC converter and critical characteristic using average model of switch. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between continuous conduction mode(CCM) and discontinuous conduction mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment. A prototype featuring 15[V] input voltage, 24[V] output voltage, and 24[W] output power using MOSFET.

Analysis of Parameter Effects on the Small-Signal Dynamics of Buck Converters with Average Current Mode Control

  • Li, Ruqi;O'Brien, Tony;Lee, John;Beecroft, John;Hwang, Kenny
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.399-409
    • /
    • 2012
  • In DC-DC Buck converters with average current mode control, the current loop compensator provides additional design freedom to enhance the converter current loop performance. On the other hand, the current loop circuit elements append substantial amount of complexity to not only the inner current loop but also the outer voltage loop, which makes it demanding to quantify circuit and operating parameter effects on the small-signal dynamics of such converters. Despite the difficulty, it is shown in this paper that parameter effects can be analyzed satisfactorily by using an existing small-signal model in conjunction with a newly proposed simplified alternative. As a result of the study, new insight into average current mode control is uncovered and discussed quantitatively. Measurable experimental results on a prototype averaged-current-mode-controlled Buck converter are provided to facilitate the analytical study with good correlation.

Average Current Mode Control Technique Having Fast Response (빠른 응답 특성을 가지는 Average Current Mode Control 설계 기법 연구)

  • Park, Hae-Chan;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.231-239
    • /
    • 2017
  • A novel current control technique with fast response and application in an unbalanced system is proposed in this paper. Contrary to the conventional PI and dead-beat current control techniques, the proposed method is adopted to the valley current mode control (VCMC) and average current mode control (ACMC) methods to overcome the phase delay caused by conventional methods. The advantages of the proposed system are simplicity of structure and ease of implementation. The VCMC and ACMC methods are established and applied to the buck converter, boost converter, three-phase PWM converter, and three-phase inverter. The control performances of the proposed systems are shown by computer simulations and verified by experimental results.

A Study of Average Current Mode Control Boost Converter for Space Craft Power System (인공위성용 전원을 위한 평균전류형 제어 BOOST 컨버터에 관한 연구)

  • Kim, H.J.;Kim, Y.T.;Kim, I.G.;Choi, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.886-888
    • /
    • 1993
  • Recently current mode control is widely adopted in switching power converter because of inherent stablity and ability of parallel operating. There are several ways in current mode control. One of them, peak current control is chiefly employed. Peak current mode control converter usually senses and controls peak inductor current. But there is peak-to-average current errors. Therefore peak current control needs compensation ramp correcting the errors. Average current mode control eliminates these problems, and is constructed by simple structures. This paper will describe the behavior of a simple average current mode boost converter and introduce the design techniques.

  • PDF

The DC/DC converter modeling using average model of switch and critical characterist (스위치 평균 모델을 이용한 DC/DC 컨버터 모델링 및 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.129-133
    • /
    • 2005
  • This paper discusses DC/DC converter modeling using average model of switch and critical characterist. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between Continuous Conduction Mode(CCM) and Discontinuous Conduction Mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment.

  • PDF

New Discrete-time Small Signal Model of Average Current Mode Control for Current Response Prediction (평균전류모드제어의 전류응답예측을 위한 새로운 이산시간 소신호 모델)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2005
  • In this paper, a new discrete-time small signal model of an average current mode control is proposed to predict the inductor current responses. Compared to the peak current mode control, the analysis of the average current mode control is difficult because of its presence of an compensation network. By utilizing sampler model, a new discrete-time small signal model is derived and used to predict the behaviors of an inductor current of average current mode control employing generalized compensation networks. In order to show the usefulness of the proposed model, prediction results of the proposed model are compared to those of the circuit level simulator, PSIM and experiment.

An Air Cleaning Efficiencies of Wet Air Cleaner in the Windowless Swine Fattening Stall in Summer (무창 비육돈사에서 습식공기정화기의 여름철 공기정화효율 분석)

  • Oh, I.H.;Lee, J.H.;Lee, K.H.;Lee, J.H.;Lee, D.S.;Eo, S.M.;Lee, M.L.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2006
  • The climate of stall significantly influences on animal production ability. High concentration of ammonia gas, $CO_2$ and lots of dust are found in modern densely raising stall system, as results, they provide a negative influence on animal and farmer health, and production ability. Therefore, it is necessary to keep clean the inside air of stall to increase the productivity. An air cleaner of wet type, consisting of a fan, a motor, rotating discs, a dust collector, a water bowl, an ozone generator etc, has been developed to clean the stall air. The work principle is that the inside air is sucked through the fan, and the rotating discs make water into fineness spray and blow into the stall. The rest water flows down to the dust collector. In the present study, we measured the dust, ammonia gas, odor, temperature and humidity in a swine stall that were installed two wet air cleaners with 700 fattening swine with On-mode and Off-mode of wet air cleaners. The dust measure was divided into 3 categories, TSP, $PM_{10}$, and $PM_{2.5}$. In summer, the TSP in on-mode were maximum $0.259mg/m^3$ and minimum $0.128mg/m^3$, and the average was $0.195mg/m^3$. These are comparable to the data from Off-mode stall that maximum $0.308mg/m^3$, minimum $0.139mg/m^3$, and average $0.277mg/m^3$. However, $PM_{10}$ and $PM_{2.5}$ showed any significant differences between the tests. The concentrations of ammonia gas in Off-mode stall were maximum 13.8 ppm and minimum 5.9 ppm, and the average was 8.47 ppm. However in On-mode stall the ammonia gas concentrations were maximum 10.5 ppm and minimum 5.5 ppm, and the average was 7.63 ppm. The concentration of ammonia gas in On-mode was 10% in average lower than off-mode stall. Odor was measured by olfactometer. In the Off-mode stall, the odor unit were maximum 420 $Ou/m^3$ and minimum $300\;OU/m^3$, and the average was $367\;OU/m^3$, but in the On-mode stall the odor unit were maximum $330\;OU/m^3$ and minimum $210\;OU/m^3$, and the average was $253\;OU/m^3$. Odor removal efficiency was about 31% in On-mode stall.

  • PDF

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.231-238
    • /
    • 2023
  • For boost PFC (Power Factor Correction) converters, various control methods are being studied to achieve unity power factor and low THD (Total Harmonic Distortion) of AC input current. Among them, average current mode control, which controls the average value of the inductor current to follow the current reference, is the most widely used. However, nowadays, as advanced digital control becomes possible with the development of digital processors, predictive control of boost PFC converters is receiving attention. Predictive control is classified into predictive current mode control, which generates duty in advance using a predictive algorithm, and model predictive current control, which performs switching operations by selecting a cost function based on a model. Therefore, this paper simply explains the average current mode control, predictive current mode control, and model predictive current control of the boost PFC converter. In addition, current control under entire load and disturbance conditions is compared and analyzed through simulation.