• 제목/요약/키워드: Average grain size

검색결과 611건 처리시간 0.029초

뫼스바우어선원적용을 위한 전기도금과 열처리기법을 이용한 Co가 확산된 Cu기지체 제조 (Synthesis of Co Diffused Cu Matrix by Electroplating and Annealing for Application of Mössbauer Source)

  • 최상무;엄영랑
    • 한국자기학회지
    • /
    • 제24권6호
    • /
    • pp.186-190
    • /
    • 2014
  • 뫼스바우어 선원 $^{57}Co/Cu$의 제조조건을 도출하기 위하여, 금속 분말 코발트(Co)를 황산에 용해시킨 후 $H_3BO_3$, KOH와 NaCl을 첨가하여 Sulfamate 도금용액을 제조 후 Cu plate 기판에 도금하였다. 도금두께는 $4{\mu}m$로 일정하게 유지하였다. 전류밀도를 $2mA/cm^2$$30mA/cm^2$로 유지하면서 pH에 변화를 준 결과 pH가 4 이상으로 증가하면 hcp 결정의 Co 금속 이외의 2차상이 생성되었다. pH가 증가할수록 Co 후막 표면이 거칠어 졌으며 균열된 표면형상을 관찰하였다. pH가 5까지 증가할 경우 평균입도는 54 nmfh 증가함을 확인하였다. 열처리조건을 변화시키면서 Co가 Cu기지 내에 구속되는 온도가 $900^{\circ}C$에서 2 h임을 확인하였다. 열처리는 진공 후 Ar 분위기(1.5 l/min)를 유지하면서 수행하였다.

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구 (A Study on the Die-casting Process of AM50 Magnesium Alloy)

  • 김순국;장창우;이준희;정찬회;서용권;강충길
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.516-523
    • /
    • 2006
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automobile industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die-casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. In this study, step-dies and flowability tests for AM50 were performed by die-casting process according to various combination of casting pressure and plunger velocity. We were discussed to velocity effect of forming conditions followed by results of microstructure, FESEM-EDX, hardness and tensile strength. Experimental results represented that the conditions of complete filling measured die-casting pressure 400 bar, 1st plunger velocity 1.0 m/s and 2nd plunger velocity 6.0 m/s. The increasing of 2nd plunger velocity 4.0 to 7.0 m/s decreased average grain size of $\alpha$ phase and pore. It was due to rapid filling of molten metal, increasing of cooling rate and pressure followed by increased 2nd plunger velocity. The pressure should maintain until complete solidification to make castings of good quality, however, the cracks were appeared at pressure 800bar over.

$(Na_{1/2}{\;}La_{1/2})TiO_3$ 세라믹스의 고주파 유전특성 (Microwave Dielectric Properties of $(Na_{1/2}{\;}La_{1/2})TiO_3$ Caramics)

  • 윤중락;홍석경;김경용
    • 한국재료학회지
    • /
    • 제3권5호
    • /
    • pp.476-481
    • /
    • 1993
  • A site 복합 페로브스카이트 구조인 $(Na_{1/2}{\;}La_{1/2})TiO_3$ 세라믹스의 고주파 유전특성을 조사하였다. $1000^{\circ}C$에서 4시간 하소하고 $1350^{\circ}{\;}~{\;}1450^{\circ}C$에서 소결했을 때 치밀한 소결체가 되었다. NLT의 겉보기 밀도는 $4.95g/\textrm{cm}^3$, 상대밀도는 96.4%였으며, 격자상수(a)가 $3.873{\AA}$인 단순 입방정 구조였다. NLT의 유전율은 밀도가 높아짐에 따라 증가하였고 품진계수 Q는 평균 결정립 크기가 커짐에 따라 증가하였다. $1400^{\circ}C$에서 4시간 소결한 NLT는 ${\varepsilon}_r=125$, Q=2842(fo=3 GHz), ${\tau}_f=465$의 유전특성을 나타내었다.

  • PDF

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics)

  • 박이현;정헌채;김동현;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

The Presence and Role of Intergranular Phase in Nd8Fe86-xNbxB6 (x = 0, 1, 2, 3) Nanocomposite Magnet Characterized by Mossbauer Spectroscopy

  • Han, Jong-Soo;Yang, Choong-Jin;Park, Eon-Byeung;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.14-22
    • /
    • 2005
  • Precisely refined Mossbauer study and nano structure observation revealed that intergranular phase formed between a-Fe and Nd₂Fe14B phase in NdFeNbB alloys plays a significant role on the magnetic properties. The intergranular interaction was characterized in term of Henkel Plot (δM plot), and hyperfine field, quardrupole splitting and isomer shift were refined to predict the presence and role of the intergranular phase. By the addition of Nb into Nd8Fe86B6 composition, coercivity was found to increase by 25% due to the refinement of average grain size of both the soft and hard magnetic phases which was decreased from 50 nm of virgin Nd/sub 8/Fe/sub 86/B/sub 6/ to 25 nm in Nd8Fe 85Nb₁B6 alloys. The role of Nb addition was confirmed to stabilize the Nd₂Fe14B lattice preventing from thermal vibration of the corresponding sites substituted Fe by Nb atoms in all sites in the Nd₂Fe14B lattice. The enhanced coercivity was originated from the exchange hardening of soft and amorphous phases surrounding the hard magnetic Nd₂Fe14B crystal.

Ag Paste bump 구조를 갖는 인쇄회로기판의 Ag migration 발생 안전성 평가 (Investigation of Ag Migration from Ag Paste Bump in Printed Circuit Board)

  • 송철호;김영훈;이상민;목지수;양용석
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.19-24
    • /
    • 2010
  • The current study examined Ag migration from the Ag paste bump in the SABiT technology-applied PCB. A series of experiments were performed to measure the existence/non-existence of Ag in the insulating prepreg region. The average grain size of Ag paste was 30 nm according to X-ray diffraction (XRD) measurement. Conventional XRD showed limitations in finding a small amount of Ag in the prepreg region. The surface morphology and cross section view in the Cu line-Ag paste bump-Cu line structure were observed using a field emission scanning electron microscope (FE-SEM). The amount of Ag as a function of distance from the edge of Ag paste bump was obtained by FE-SEM with energy dispersive spectroscopy (EDS). We used an electron probe micro analyzer (EPMA) to improve the detecting resolution of Ag content and achieved the Ag distribution function as a function of the distance from the edge of the Ag paste bump. The same method with EPMA was applied for Cu filled via instead of Ag paste bump. We compared the distribution function of Ag and Cu, obtained from EPMA, and concluded that there was no considerable Ag migration effect for the SABiT technology-applied printed circuit board (PCB).

Pb(Sb1/2Sn1/2)O3-PbTiO3-PbZrO3 세라믹스의 유전 및 압전 특성에 관한 연구 (A Study on the Dielectric and Piezoelectric properties of the Pb(SbS11/2TSnS11/2T)OS13T-PbTiOS13T-PbZrOS13T Ceramics)

  • 정장호;류기원;이성갑;이영희
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.517-524
    • /
    • 1992
  • In this study, 0.10Pb(SbS11/2TSnS11/2T)OS13T-(0.90-x)PbZrOS13T (0.25 x 0.40) ceramics were fabricated by the atmospheric method. The sintering temperature and time were 1250[$^{\circ}C$] and 2[2hr], respectively. The structureal, dielectric and piezoelectric properties with composition of PbTiOS13T were studied. As the results of XRD ans SEM, the crystal structure of a specimen was rhombohedral, lattice constant and average grain size were decreased with increasing the contents of PbTiOS13T. Relative dielectric constant and Curie temperature were increased with increasing the contents of PbTiOS13T, 0.10PSS-0.40PT-0.50PZ specimen had the highest values of 904 and 265[$^{\circ}C$], respectively. In increasing of PbTiOS13T contents form 25[mol%] to 40[mol%], piezoelectric charge constant and electromechanical coupling factors were increased form 114[pC/N] to 142[pC/N], 17[%] to 24[%] and mechanical quality factor were decreased with increasing the contents of PbTiOS13T. In the 0.10PSS-0.40PT-0.50PZ specimens, those values were 14.2[kV/cm] and 9.43[x10S0-6TC/cmS02T], resectively.

펄스 전류 활성 연소합성에 의한 나노구조의 2MoSi2-SIC제조 및 기계적 성질 (Mechanical Properties and Fabrication of Nanostructured 2MoSi2-SiC by Pulsed Current Activated Combustion Synthesis)

  • 손인진;김동기;정인균;도정만;윤진국;고인용
    • 한국분말재료학회지
    • /
    • 제14권4호
    • /
    • pp.245-250
    • /
    • 2007
  • Dense nanostructured $2MoSi_{2}-SiC$ composites were synthesized by the pulsed current activated combustion synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of $Mo_{2}C$ and 5Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense $2MoSi_{2}-SiC$ with relative density of up to 96% was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average grain size of $MoSi_{2}$ and SiC were about 120 nm and 90 nm, respectively. The hardness and fracture toughness values obtained were 1350 $kg/mm^{2}$ and 4 $MPa{\cdot}m^{1/2}$, respectively.