• Title/Summary/Keyword: Avalanche Effect

Search Result 54, Processing Time 0.024 seconds

Avalanche and Bit Independence Properties of Photon-counting Double Random Phase Encoding in Gyrator Domain

  • Lee, Jieun;Sultana, Nishat;Yi, Faliu;Moon, Inkyu
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.368-377
    • /
    • 2018
  • In this paper, we evaluate cryptographic properties of a double random phase encoding (DRPE) scheme in the discrete Gyrator domain with avalanche and bit independence criterions. DRPE in the discrete Gyrator domain is reported to have higher security than traditional DRPE in the Fourier domain because the rotation angle involved in the Gyrator transform is viewed as additional secret keys. However, our numerical experimental results demonstrate that the DRPE in the discrete Gyrator domain has an excellent bit independence feature but does not possess a good avalanche effect property and hence needs to be improved to satisfy with acceptable avalanche effect that would be robust against statistical-based cryptanalysis. We compare our results with the avalanche and bit independence criterion (BIC) performances of the conventional DRPE scheme, and improve the avalanche effect of DRPE in the discrete Gyrator domain by integrating a photon counting imaging technique. Although the Gyrator transform-based image cryptosystem has been studied, to the best of our knowledge, this is the first report on a cryptographic evaluation of discrete Gyrator transform with avalanche and bit independence criterions.

Fault Tolerant Cryptography Circuit for Data Transmission Errors (데이터 전송 오류에 대한 고장 극복 암호회로)

  • You, Young-Gap;Park, Rae-Hyeon;Ahn, Young-Il;Kim, Han-Byeo-Ri
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.37-44
    • /
    • 2008
  • This paper presented a solution to encryption and decryption problem suffering data transmission error for encrypted message transmission. Block cypher algorithms experience avalanche effect that a single bit error in an encrypted message brings substantial error bits after decryption. The proposed fault tolerant scheme addresses this error avalanche effect exploiting a multi-dimensional data array shuffling process and an error correction code. The shuffling process is to simplify the error correction. The shuffling disperses error bits to many data arrays so that each n-bit data block may comprises only one error bit. Thereby, the error correction scheme can easily restore the one bit error in an n-bit data block. This scheme can be extended on larger data blocks.

Characteristics of the Avalanche Injection on SiO2Layer in MOS Structures (MOS 구조에서의 Avalanche Injection에 관한 연구)

  • 성영권;김성진;백우현;박찬원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.6
    • /
    • pp.244-252
    • /
    • 1985
  • A model is presented to explain charging phenomena into the oxide layer when a metal-oxide-silicon(MOS) capacitor is driven by a large amplitude and high frequency ac signal sufficient to produce avalanche injection in the silicon. During avalanche, minority carriers are injected. It is assumed that some of these minority carriers attain sufficient energy to surmount the potential barrier at the interface, and then inter the oxide. Measurements of C-V curves are made for the MOS capacitor with p-type silicon substrates before and after avalanche injection. This paper studies how charging in the oxide and the interface depends on oxide properties. It is concluded that this charging effect is related to the presence of water in the oxide.

  • PDF

6.25-Gb/s Optical Receiver Using A CMOS-Compatible Si Avalanche Photodetector

  • Kang, Hyo-Soon;Lee, Myung-Jae;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.217-220
    • /
    • 2008
  • An optical receiver using a CMOS-compatible avalanche photodetector (CMOS-APD) is demonstrated. The CMOS-APD is fabricated with $0.18{\mu}m$ standard CMOS technology and the optical receiver is implemented by using the CMOS-APD and a transimpedance amplifier on a board. The optical receiver can detect 6.25-Gb/s data with the help of the series inductive peaking effect.

An Encryption Algorithm Based on DES or Composition Hangul Syllables (DES에 기반한 조합형 한글 암호 알고리즘)

  • 박근수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • In this paper we present a Hangul Encryption Algorithm (HEA) which encrypts composition Hangul syllables into composition Hangul syllables using the non-linear structure of Hangul. Since ciphertexts generated by HEA are displayable characters HEA can be used in applications such as Privacy Enhanced mail (PEM) where ciphertexts should be displayable characters. HEA is based on DES and it can be shown that HEA is as safe as DES against the exhaustive key search differential cryptanalysis and linear cryptanalysis. HEA also has randomness of phonemes of ciphertexts and satisfies plaintext-ciphetext avalanche effect and key-ciphertext avalanche effect.

A Countermeasure against Brute-force Attack using Digital Holography and DES Algorithm (디지털 홀로그래피와 DES 알고리즘을 이용한 전수키 공격 대응 기법)

  • Noh, Chang-Oh;Moon, In-Kyu;Cho, Beom-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.73-78
    • /
    • 2011
  • The DES encryption algorithm employed in information security has a strong avalanche effect, and the processing speed to encrypt is also fast. However, due to the H/W advances, the secret key length of DES having 56bits is not enough so that it is easily exposed to brute force attack. In this paper, we present a new method to significantly increase the secret key length in the DES by integration of digital holography and DES algorithm. In addition, we evaluate the encryption performance of the proposed method by measuring the avalanche effect and verify the possibility of it.

Fault Tolerant Encryption and Data Compression under Ubiquitous Environment (Ubiquitous 환경 하에서 고장 극복 암호 및 데이터 압축)

  • You, Young-Gap;Kim, Han-Byeo-Ri;Park, Kyung-Chang;Lee, Sang-Jin;Kim, Seung-Youl;Hong, Yoon-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.91-98
    • /
    • 2009
  • This paper presents a solution to error avalanche of deciphering where radio noise brings random bit errors in encrypted image data under ubiquitous environment. The image capturing module is to be made comprising data compression and encryption features to reduce data traffic volume and to protect privacy. Block cipher algorithms may experience error avalanche: multiple pixel defects due to single bit error in an encrypted message. The new fault tolerant scheme addresses error avalanche effect exploiting a three-dimensional data shuffling process, which disperses error bits on many frames resulting in sparsely isolated errors. Averaging or majority voting with neighboring pixels can tolerate prominent pixel defects without increase in data volume due to error correction. This scheme has 33% lower data traffic load with respect to the conventional Hamming code based approach.

Frquency Characteristics of Electronic Mixing Optical Detection using APD for Radio over Fiber Network (무선 광파이버 네트웍(RoF)을 위한 APD 광전 믹싱검파의 주파수 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1386-1392
    • /
    • 2009
  • An analysis is presented for super-high-speed optical demodulation by an avalanche photodiode(APD) with electric mixing. A normalized gain is defined to evaluate the performance of the optical mixing detection. Unlike previous work, we include the effect of the nonlinear variation of the APD capacitance with bias voltage as well as the effect of parasitic and amplifier input capacitance. As a results, the normalized gain is dependent on the signal frequency and the frequency difference between the signal and the local oscillator frequency. However, the current through the equivalent resistance of the APD is almost independent of signal frequency. The mixing output is mainly attributed to the nonlinearity of the multiplication factor. We show also that there is an optimal local oscillator voltage at which the normalized gain is maximized for a given avalanche photodiode.

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

Cold Cathode using Avalanche Phenomenon at the Inversion Layer (반전층에서의 애벌런치 현상을 이용한 냉음극)

  • Lee, Jung-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.414-423
    • /
    • 2007
  • Field Emission Display(FED) has significant advantages over existing display technologies, particularly in the area of small and high quality display. In order to test the feasibility of fabricating the System-on-Chip(SOC) with FED, we conducted the experiment to use the p-n junction as an electron beam source for the flat panel display. A novel structure was constructed to form p-n junctions by generating inversion layer with the electric field from the cantilever style gate. When we applied more than 220V at the cantilever style gate which has a height of $1{\mu}m$, avalanche breakdown onset was successfully achieved. The characteristics was compared with the electron emission from the ultra shallow junction in the avalanche region. The experiment result and the future direction were discussed.