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I. INTRODUCTION

Development of reliable encryption techniques or 

cryptosystems is of great interest among scientists to help 

restore some trust to digital images by converting plaintext 

into ciphertext before transmitting the data through an 

insecure communication channel [1, 2]. Among many of 

these techniques, data encryption standard (DES), advanced 

encryption standard (AES), Rivest-Shamir-Adelman (RSA) 

and elliptic curve cryptosystems (ECC) are the most 

commonly used platforms. Concurrently, to analyze the 

encryption algorithms, several cryptographic attack methods 

have been contrived. For example, brute force attacks, meet- 

in-the-middle attacks, linear cryptanalysis and differential 

cryptanalysis. The former two focus on the length of the 

key. In contrast, the linear cryptanalysis and differential 

cryptanalysis depends on the statistical analysis of the 

plaintext and the encryption key. To make the cipher 

algorithm robust against the statistical attacks, avalanche 

effect and bit independence criterion are the two most 

important properties to take into account first. Avalanche 

effect is a characteristic in which a slight change in an input 

produces significant change in the output. A cryptanalyst 

can make predictions about the input, being given only the 

output if a cipher algorithm does not show good avalanche 

effect. Bit independence criterion is a test of randomness 

of a cryptographic encryption algorithm. It is not possible 

to infer one value in the sequence from the others if it is 
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produced by an algorithm that achieves an excellent bit 

independence criterion. Although digital forgeries may leave 

no visual traces of tampering, however, such modifications 

usually perturb the underlying statistics of the original 

image [1]. Therefore, we can analyze the avalanche and 

bit independence properties to construct robust image 

cryptography algorithms because a slight modification in 

the image would introduce a huge difference in the new 

message digest. The above-mentioned digital encryption 

algorithms have acceptable avalanche and bit independence 

properties [3]. The investigation of these properties in 

encryption algorithms can be very useful for evaluation of 

further cryptographic performance. 

The optical encryption techniques have a significant role 

in the image cryptography field as they offer high-speed 

parallel processing ability, multiple keys and multiple 

degrees of freedom. The double random phase encoding 

(DRPE) scheme is a widely used optical encryption 

technique such that it is useful for image encryption, 

authentication, information hiding and watermarking [3-8]. 

It has been implemented in different domains like Fourier, 

Fresnel, Gyrator domains, and so on [9-11]. Among all 

these domains, avalanche and bit independence properties 

were tested for Fourier and Fresnel domains in [12]. As an 

extension of work [12], we evaluate the avalanche and bit 

independence properties of the DRPE in the discrete 

Gyrator domain. Gyrator transform-based image encryption 

has been widely implemented for single image, double 

image, multi-image and color [13-18] image encryption. In 

this domain, a secret image is encrypted applying random 

operations in image Gyrator transform domains. The DRPE 

in the Gyrator domain is considered to be more secure 

than the traditional DRPE technique in the Fourier domain 

because the rotation angle in the Gyrator transform has 

greatly increased the key space [19]. Recently, the expression 

for the Gyrator transform (GT) has been rewritten by using 

a convolution operation, which is known as discrete Gyrator 

transform (DGT). In this expression, conventional GT can 

be expressed using phase-only filtering, Fourier transform 

and inverse Fourier transform. This expression is regarded 

as the fast algorithm of discrete Gyrator transform and 

simple to implement [14, 20]. It has been claimed in [19] 

that based on the periodicity of the Gyrator transform, the 

rotation angle in a single Gyrator transform can possibly 

be obtained approximately by applying exhaustive search 

with a known-plaintext attack. However, since Gyrator 

transform is continuous, it is very time consuming to 

apply thus exhaustive search techniques. Even though there 

exists some security analysis research about DRPE in the 

Gyrator domain [6, 21], there is no research about its 

avalanche effect and bit independence criterion features 

which are desirable properties of cryptographic algorithms. 

Therefore, we introduce these properties into an optical 

encryption algorithm [12] and measure the avalanche and 

bit independence for DRPE in the Gyrator domain in this 

paper. Moreover, a photon counting imaging (PCI) technique 

[22, 23] is integrated into the system of DRPE in the Gyrator 

domain to improve the avalanche effect characteristic of 

DRPE in the Gyrator domain, which can enhance the 

security of the system. 

This paper is organized as follows. First, we give an 

overview of the double random phase encoding in Section 

2. Then we show the mathematical modeling of a fast 

algorithm of discrete Gyrator transform with double random 

phase masks in Section 3. In Section 4, we shed light on 

the concept of photon counting imaging. We then describe 

what the avalanche and bit independence criterion is, in 

Section 5. In Section 6, we show and discuss our experi-

mental results. Finally, we conclude our discussion in 

Section 7.

II. DOUBLE RANDOM PHASE ENCODING 

(DRPE)

Since double random phase encoding (DRPE) was 

proposed in 1995, it has been studied and implemented 

vastly in the information security aspect [24, 25]. It was 

found robust to different types of noise and distortion [3]. 

The encoded image resulting from two random phase 

masks is a complex function consisting of phase and 

amplitude. The pixel values in real and imaginary parts of 

this complex function are independent stationary white 

noise data. The phases of the statistically independent 

Input Image
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Lens-1 Lens-2

f f f fPlane Wave

FIG. 1. Schematic diagram of the DRPE in Fourier domain (f is the focal length of the lens).



Current Optics and Photonics, Vol. 2, No. 4, August 2018370

random masks (keys) in the spatial and frequency domains 

are expressed as exp[i2πn(x, y)] and exp[i2πb(μ, ν)] where 

the random functions n(x, y) and b(μ, ν) are uniformly 

distributed in the range of [0,1]. The encryption process 

can be shown with the following equation:

 

[ ]1( , ) ( , ) exp[ 2 ( , )] exp[ 2 ( , )] ,
c
f x y f x y i n x y i bπ π μ ν

− ⎡ ⎤= ℑ ℑ⎣ ⎦
(1)

where ℑ and 1−
ℑ  are 2D Fourier and inverse Fourier 

transforms. The procedure is reversed for the decryption. 

Figure 1 shows the DRPE schematic in the Fourier domain. 

Since DRPE in the Fourier domain has been reported as 

vulnerable to chosen ciphertext, ciphertext only and known 

plaintext-ciphertext attacks, many improvements in the 

conventional DRPE system have taken place afterwards 

[26-28]. For example, the DRPE system integrated with a 

photon counting imaging (PCI) technique was proposed by 

Pérez-Cabré to improve the cryptographic performance of 

the DRPE system where the photon counting DRPE scheme 

introduces an additional layer of protection and thus makes 

the cryptosystem more secured [22, 23]. 

III. MATHEMATICAL MODELING OF 

DRPE IN GYRATOR DOMAIN

The Gyrator transform (GT) belongs to the orthosymplectic 

class of linear canonical transforms as well as to the 

fractional Fourier transforms, and produces the rotation in 

twisted position-spatial frequency planes of phase space [29, 

30]. For the large range of rotation angles α, GT domain 

can be constructed with only three generalized lenses with 

a fixed distance between them [30]. GT expression of a 

two dimensional function ( ),
�

i i
f g  having rotation angle α, 

can be defined as:
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where α = pp/2, 0 ≤ α < 2p, and 0 ≤ p < 4. GT is expressed 

as a

G . 
�

i
g  and 

�

o
g  represents the input and output plane 

coordinates. In the equation, ( , ; , )
i i o o

K x y x y
α

 is the kernel 

function of the GT. The Gyrator transform is periodic with 

2p [17]. For p = 0 (α = 0), the transform is an identity 

transform. At p = 1 (α = p/2), the direct Fourier transform 

with rotation of the coordinate at p/2 is obtained. When 

p = 2 (α = p), it corresponds to the reverse transform. For 

p = 3 (α = 3p/2), the system resembles the inverse Fourier 

transform with a rotation of the coordinate by p/2. The 

inverse Gyrator transform corresponds to a Gyrator transform 

at a rotation angle -α [19, 31]. 

The Fresnel diffraction integral in the free space under 

paraxial approximation can be used to calculate the 

discrete GT. However, if we think about the computational 

scheme, the computational load would be heavier. The fact 

that a fast algorithm of discrete GT obtained by simulating 

the convolution expression of fractional Fourier transform 

accelerates the application and the validity of the 

aforementioned algorithm has been proved by numerical 

simulation in [20]. If we want to construct an image 

cipher, a fast algorithm is more preferred. Therefore, we 

follow a fast algorithm of discrete Gyrator transform to 

design our algorithm. Using the trigonometric equation,

cot tan[ ] 1 sin ,
2

α

α α= − +  Eq. (3) can be expressed as 

follows:

exp 2 ( ) tan
2
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i i o o
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Combining Eqs. (2) and (4), the convolution equation of 

GT can be constructed as follows: 

( ) ( ) ( ) ( ) ( ){ }1 1 2
, , , , , ,

o o o g o o i i i i i i i
f x y f p x y f x y p x y p x y= = ∗⎡ ⎤⎣ ⎦

(5)

where the symbol ‘*’ represents the convolution operation. 

p1 and p2 are two phase only masks, which are equal to

( )
2

1

tan
2

, ,

i xy

p x y e

α

π−

=  (6)

2 csc

2
( , ) .

sin

i xy
e

p x y

π α

α

=

 (7)

Since we are using two random phase masks RP1 and 

RP2 and two different angles α1 and α2 as additional phase 

keys, our new phase masks in the discrete Gyrator domain 

are as follows: 

1- 2 1( , ) tan
2

1
( , ) ,

i RP x y

p x y e

α

π

′ =  (8)

2
2 2( , ) csc

2

2

( , )
sin

.
i RP x y
e

p x y

π α

α

′ =

 (9)

According to the convolution property of Fourier trans-

forms, Eq. (5) can be written as:
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1

1 1 2
.

g i
f p p f p

−′ ′ ′= ℑ ℑ ℑ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦⎣ ⎦  (10)

We substitute 2
p⎡ ⎤′ℑ

⎣ ⎦ with P in Eq. (10) and get our 

final equation of discrete Gyrator transform as follows: 

1

1 1
.

g i
f p p f P− ⎡ ⎤⎡ ⎤′ ′= ℑ ℑ

⎢ ⎥⎣ ⎦⎣ ⎦  (11)

Discrete Gyration transform can be implemented by 

applying the FFT algorithm twice. Thus the computational 

speed is much increased [14, 20]. The simple schematic 

diagram of DRPE in the Gyrator domain is illustrated in 

Fig. 2. As shown in Fig. 2, the lenses are Fourier optics 

lenses. P(μ,ν) and I(μ,ν) denote P and 1 i
p f⎡ ⎤′ℑ

⎣ ⎦
 in Eq. (11), 

respectively. I’(μ,ν) represents 
1

1 i
p f P− ⎡ ⎤⎡ ⎤′ℑ ℑ

⎢ ⎥⎣ ⎦⎣ ⎦
 in Eq. (11) 

and the two plans together in Fig. 2 means the pixel-wise 

multiplication.

IV. PHOTON COUNTING IMAGING

The photon counting imaging (PCI) technique was 

invented for low light levels or night vision, situations in 

which only a limited number of photons can reach the 

image sensors [5, 22, 23]. PCI has the advantage that, in 

the entire scene, the number of photons can be limited by 

controlling the expected number of incident photons. A 

photon limited image carries less information than that of 

the original counterpart and hardly reveals the original 

appearance of the primary image. Thus, such a system 

improves information authentication robustness against 

intruder attacks. By generating a sparse encrypted data, it 

generates a distribution with fewer photons than conventional 

imaging techniques and also provides a substantial bandwidth 

reduction [22, 23, 32]. 

The PCI simulation has the assumption that the probability 

of counting photons at any arbitrary pixel in a captured 

image follows a Possion distribution [5]. The Poisson 

distribution of the probability of counting lj photons at 

pixel j is shown by the following equation:

[ ]
( ; ) , 0,1, 2...,

!

j jl

j

j j j

j

e
Poisson l l

l

λ

λ
λ

−

= =  (12) 

where lj is the Poisson parameter defined by:

,
j p j

N xλ =  (13)

where Np is the expected number of incident photons, xj is 

the normalized irradiance at pixel j, such that 
1

1,
N

jj
x

=

=∑  

and N is the total number of pixels in the scene [5].

It has been proved that photon-limited encrypted 

distributions have sufficient information for successful 

authentication and retrieval of the signal [22, 23]. Although 

the signal can be retrieved after decryption, it remains a 

visually unrecognizable noise-like signal to the receiver 

because of the sparse representation of the encrypted image. 

Even though intruders may try to get some information 

from the decrypted image, they cannot recognize the image 

by visual inspection [22, 23]. We can draw some conclusions 

from the previous discussion that the integration of PCI 

can make the system one-way as the decrypted image will 

not be visually recognizable and will be useful for image 

verifications. Therefore, usually the sparse distributed photon 

limited image obtained by applying PCI is not intended for 

visualization of the original primary image. Rather, it is 

intended for the verification of the authenticity of the 

original image by means of optical correlation. 
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FIG. 2. Schematic diagram of the DRPE in Gyrator domain (f is the focal length of the lens).
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V. AVALANCHE AND BIT INDEPENDENCE 

CRITERIONS

The avalanche and bit independence criterions are good 

cryptographic properties and widely used to design the 

cryptographic algorithms, especially the block ciphers [33]. 

When the security of cryptographic systems is analyzed, it 

is necessary to measure whether the system reaches a 

certain optimum level of security or not. Cryptographic 

test methods such as avalanche, strict avalanche and bit 

independence criteria are of great interest to measure the 

degree of security of the designed cryptographic networks 

[34] because the statistical-based cryptanalysis such as 

linear and differential cryptanalysis are related to these 

criterions [35]. Therefore, we introduce the avalanche and 

bit independence properties into an optical domain-based 

encryption algorithm. If the designed optical encryption 

algorithms achieve a satisfactory bit independence and 

avalanche effect, they would be robust against statistical- 

based cryptanalysis [12] as in the case of block ciphers.

5.1. Avalanche and Strict Avalanche Criterions

In cryptographic function design, avalanche effect is a 

very well-known heuristic. Although the name of this 

criterion was first coined by Feistel, the original idea links 

back to Shannon’s notion of diffusion [36]. From the view 

of an encryption algorithm, an avalanche effect is evident 

if a small change in the plaintext or key brings a 

drastically large change in the cipher-text. For encryption, 

it is a characteristic in which a small change in the 

message produces a large change in the message digest 

[37]. The avalanche effect intuitively reflects the idea of 

high-nonlinearity [38]. If a substantial degree of avalanche 

effect is not exhibited during the avalanche test, then the 

designed algorithm has a poor randomization, which would 

allow a cryptanalyst to make predictions about the input, 

only from the given output. This weakness of the algorithm 

may partially or completely break the algorithm [39]. 

Webster and Tavares proposed the combination of 

completeness and the avalanche effect as a new criterion 

called strict avalanche criterion (SAC). It is a generalization 

of the avalanche effect. The SAC can be satisfied when an 

average of 50% of the output bits exhibit a change with 

the change in one input bit [39]. 
Suppose an encryption process E is represented as 

( , ),Y E X K=  where X is the plaintext, K is the encryption 

key and Y is the ciphertext. If we change the plaintext into 

X ′, then after encryption, we obtain the new ciphertext 

( , )Y E X K′ ′= . If we change the key into ,K ′  then the 

ciphertext becomes ( , ).Y E X K′′ ′=  If we consider the 

Hamming distance between the original ciphertext Y and 

the ciphertext Y ′ (which we obtain by encrypting after 

changing some bits of the original plaintext) is ( , ),H Y Y ′  

then the avalanche effect can be calculated from the 

following equation:

( )

( )

,

,

H Y Y
Avalanche

Num Y

′

=  (14)

where ( )Num Y  denotes the total number of binary bits of 

the ciphertext. Similarly, the avalanche equation for some 

big change in the key (K ′) can be represented by the 

following equation:

( )

( )

,

,

H Y Y
Avalanche

Num Y

′′

=  (15)

where ( , )H Y Y ′′  is the Hamming distance between the 

original ciphertext Y  and the ciphertext Y ′′ (with some bits 

changed in the key).

5.2. Bit Independence Criterion

Bit independence criterion (BIC) was introduced by 

Webster and Tavares as another property for S-box security. 

It is a test of randomness of a cryptographic encryption 

algorithm [38]. If the bit independence criterion is satisfied, 

then it is not possible to infer one value in the sequence 

from the others [37]. We measure the degree of indepen-

dence between a pair of avalanche variables by calculating 

the correlation coefficient. BIC is satisfied if any change in 

the single input bit i in the plaintext or in the encryption 

key results in a change in a way that any two output bits 

j and k in the ciphertext are changed independently of 

each other. Suppose there are total N bits in the plaintext 

and according to BIC, the plaintext can be changed N 

times when only one bit is flipped at a time. The bit 

independence (BI) between bits j and k in the ciphertext 

can be defined using the absolute correlation coefficient as 

follows: 

( ) ( )( ) ( ) ( )( )1 1
, , , , , , ,

i N i N

j k j j j k k k
BI C b C b corr b b b b b b= … … … …  

(16)

where C(bj) and C(bk) connote the jth and kth bits in the 

ciphertext, and 
i

j
b  and 

i

k
b  denote the values of the jth and 

kth bits in the ciphertext with change in the ith bit in the 

plaintext. If the resulting value of Eq. (16) is close to 1, 

then it reveals strong correlation between two bits. The bit 

independence criterion implies that each pair of bits in the 

ciphertext for a given crypto algorithm should be bit 

independent. Accordingly, the bit independence criterion 

(BIC) for an encryption algorithm can be demonstrated 

with the following equation:

( ) ( )( )
1 ,

( ( , )) max , ,j k
j k N
j k

BIC E X Y BI C b C b
≤ ≤

≠

=

 (17)

where E(X, K) connotes the encryption algorithm. If 

BIC(E(X, K)) is far from 1, it demonstrates that the algorithm 
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satisfies bit independence criterion very well. Conversely, 

the BIC(E(X, K)) value close to 1 means some bit pairs 

are dependent on each other in the encrypted image [38]. 

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, all experiments were performed under the 

following environment: 1) Computer: Intel® Core™ i5-2500, 

2) CPU: 3.30 GHz, 3) RAM: 4 GB, 4) OS: Windows 7, 

5) Matlab: R2014a.

Moreover, all resulting data were digitally recorded and 

stored in the computer without optical configuration. In the 

simulation part of our experiment, a grayscale image of 

size 50 × 50 is used to test the avalanche criterion. The 

avalanche effect and bit independence values of a good 

encryption algorithm should be independent of the size of 

input image. Similar results are obtained when input images 

with different sizes are used in this paper. An illustration 

of the used image is shown in Fig. 3(a). We converted the 

amplitude value of the image encrypted by the DRPE in 

discrete Gyrator domain into binary representation whenever 

we analyzed our proposed method for bit units. We used 

IEEE 754 double precision floating point format for binary 

representation and only considered the fractional portion 

consisting of 52 bits of significant digits. The values of this 

portion were only altered when even one bit was flipped. 

In contrast, the value in the sign and exponent portions 

were similar for the majority of the amplitude values with 

double formats. Therefore, we only concentrated on the 52 

bits of the significant digits to carry the experiment without 

loss of generality. 100 simulation results were averaged to 

calculate the avalanche values. To calculate the avalanche 

effect, we conducted the experiment changing plaintext, 

first phase key, second phase key and rotation angle 

independently. The rotation angles were randomly chosen 

and kept fixed at α1 = 0.32 and α2 = 0.75 (in radian) to 

calculate these properties when bits in plaintext, first phase 

key and second phase key are altered. We measured the 

results in both bit unit and pixel unit. In bit unit, all of the 

pixel values are denoted and compared in bit. The ideal 

value of avalanche effect is 50% in bit unit because there 

are only two possible values (0 and 1) in bit space and 

50% makes the most difficulty for the cryptanalyst to make 

a prediction. In pixel unit, pixels are compared using the 

pixel intensity value directly. In this case, the avalanche 

effect of 100% is the ideal value because the value space 

in pixel unit is much higher and 100% brings the most 

difficulty for the cryptanalyst to do an inference. Figure 4 

presents the avalanche effect values obtained by varying 

the number of bits in the plaintext, Fig. 5 presents the 

avalanche effect values obtained by varying number of bits 

in the first phase key, and Fig. 6 presents the avalanche 

values obtained by varying number of bits in the second 

phase key for DRPE in the Fourier and Gyrator domains.

In all of the figures, the resulting avalanche values are 

shown in terms of the avalanche effect of DRPE in bit 

unit. Furthermore, the avalanche effect in pixel unit is also 

(a)                                                 (b)

FIG. 3. Illustration of (a) the gray scale image used for testing 

avalanche criterion and (b) the binary image used for testing 

bit independence criterion.
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FIG. 5. Avalanche effect with some bits in the first phase key 

inverted.
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calculated and shown in all of the figures, which is 

labeled as DRPE in pixel unit. It is evident from the Figs. 

4~6 that the DRPE in discrete Gyrator domain shows 

similar avalanche effect as compared to that of Fourier 

domain when 50% and 100% are regarded as ideal values 

for avalanche effect in bit and pixel unit, respectively. All 

avalanche values obtained by varying the number of bits 

in the plaintext, first phase key, and second phase key of 

the DPRE in discrete Gyrator domain tend to be close to 

50% as the increase of number of flipped bits. In brief, 

when the number of bits changed is less than 10 bits in the 

plaintext, less than 15 bits in the first and second phase 

key of the DRPE in both Fourier and Gyrator domain, the 

avalanche effect was not satisfactory as it was not close to 

50% in bit unit. When more than 5 bits are changed in the 

plaintext, first or second phase key, the avalanche effects 

in pixel unit reach 100% for DRPE in both Fourier and 

Gyrator domain. Even if one bit is changed, the avalanche 

effects in pixel unit are larger than 90% for DRPE in both 

Fourier and Gyrator domains, which means that one-bit 

change affects most of the output values.

In the next step, we also check the avalanche effect of 

the two rotation angles. The rotation angles for the a1 and 

a2 are set to be 40 degree and are used as reference in 

this experiment. Then, the avalanche effect values are 

measured by changing the rotation angle. The resulting 

avalanche values are shown in Table 1. From Table 1, it 

is observed that the resulting avalanche effects in bit unit 

are all nearly 50% when some degrees are changed. It is 

also measured that all the avalanche effects in pixel unit 

are 1 which means all of the output values are changed 

when the input rotation angles are changed. Any change in 

the rotation angle results in a drastic change in all of the 

bits and pixel, which proves the great potential of the 

rotation angle as a key. 

Based on the previous simulation results, we try to 

integrate the photon counting imaging (PCI) technique into 

DRPE in Gyrator domain to improve the avalanche effect. 

PCI is designed for low light levels (photon starved 

conditions) or night vision. Logically, the fewer photons it 

contains, the less information it has to interpret visually 

since the scene becomes more sparse due to fewer photons 

arriving at each pixel. Figures 7~9 show the avalanche 

effect values by flipping some number of bits in the 

plaintext, first and second phase key of DRPE in the 

Gyrator domain. Here, the number of photons Np is set to 
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FIG. 6. Avalanche effect with some bits in the second phase 

key inverted.

TABLE 1. Avalanche effect for DRPE in discrete gyrator 

with rotation angle changed

Rotation angle 

α1 (in degree)

Avalanche 

effect in bit 

unit

Rotation angle 

α2 (in degree)

Avalanche 

effect in bit 

unit

  45 0.4899   45 0.4990

  60 0.5008   60 0.4986

  90 0.4978   90 0.5011

120 0.4994 120 0.5019

135 0.5015 135 0.4993

150 0.4990 150 0.5003

210 0.5011 210 0.4988

225 0.5006 225 0.4995

240 0.4988 240 0.5010

270 0.4995 270 0.5009

300 0.5000 300 0.4989

315 0.4994 315 0.5007

330 0.5010 330 0.4997
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FIG. 7. Avalanche effect with some bits in the plaintext 

inverted for DRPE in the Gyrator domain integrated with PCI 

(Np = 105).
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be 105 and the two rotation angles are given as α1 = 0.32 

and α2 = 0.75 (in radians) respectively. It is noted from 

Figs. 7~9 that all of the avalanche effect values in bit unit 

are very close to 50% and avalanche effect in pixel unit 

are almost 100% which means excellent avalanche effect 

is achieved when the PCI technique is introduced into 

DRPE in the Gyrator domain. In the view of cryptanalysis, 

the combination of DRPE in the Gyrator domain and PCI 

can enhance the system security because it has substantial 

avalanche effect, which is one of the primary design 

objectives.

In order to visually observe the effect of these algorithms, 

the encrypted and decrypted images for Fig. 3(a) using 

DRPE in the Fourier domain, the Gyrator domain, and the 

photon-counting DRPE in the Gyrator domain are given in 

Fig. 10. The average processing times for DRPE in the 

Fourier and Gyrator domains are 0.2536 s and 0.4548 s, 

respectively while it is 0.5517 s for the photon-counting 

DRPE in the Gyrator domain.

After evaluating avalanche effect criterion, we tested bit 

independence criterion (BIC) of the DRPE systems in both 

the Fourier and Gyrator domains. To test the BIC, a 

binary cameraman image was utilized. The binary image 

used for this purpose is shown in Fig. 3(b). All of the bit 

independence values were measured taking an average of 

100 numerical simulations. A correlation value obtained 

from Eq. (16) shows satisfactory bit independence criterion 

if it is not close to 1. Table 2 is a comparison table 
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FIG. 8. Avalanche effect with some bits in the first phase key 

inverted for DRPE in the Gyrator domain integrated with PCI 

(Np = 105).
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FIG. 9. Avalanche effect with some bits in the second phase 

key inverted for DRPE in the Gyrator domain integrated with 

PCI (Np = 105).

(a)                                             (b)

(c)                                             (d)

(e)                                             (f)

FIG. 10. Encrypted and decrypted images from (a)-(b): DRPE 

in the Fourier domain, (c)-(d): DRPE in the Gyrator domain, 

(e)-(f): photon-counting DRPE in the Gyrator domain with 

PCI (Np = 105).

TABLE 2. Bit independence criterion for DRPE in the 

Fourier and discrete Gyrator domains

Repeatedly 

changing bits in

Bit independence criterion

Discrete Gyrator 

domain
Fourier domain

Plaintext 0.2606 0.2820

First random key 0.4381 0.4809

Second random key 0.3936 0.5638
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showing bit independence values for the DPRE in the 

discrete Gyrator domain and the DRPE in the Fourier 

domain. It can be seen from Table 2 that the BIC for 

DRPE in both Fourier and Gyrator domains are good 

because there is no value that is close to 1, which means 

there are no strong correlations between any pair of bits. 

Therefore, it is difficult to predict one bit from other bits 

and make the cryptanalysis difficult.

Moreover, Table 3 shows the bit independence values 

for the photon counting DPRE in the discrete Gyrator 

domain. Here, the rotation angles were randomly chosen as 

α1 = 0.35 and α2 = 0.75 (in radians) and the photon number 

is given as 105. It is noted from Table 3 that excellent 

BIC values are achieved for photon counting DRPE in the 

Gyrator domain. 

Avalanche and bit independence properties signify the 

robustness against statistical analysis. Verification of these 

properties has paramount importance in designing of the 

cryptographic algorithms, especially for block cipher 

designing. Gyrator domain has been widely implemented in 

image encryption recently. Therefore, analysis of avalanche 

and bit independence properties of encryption systems in the 

Gyrator domain is important to investigate the feasibility 

of using it in the secure image authentication systems 

based on DRPE. Image encryption algorithms in the 

Fourier domain have weaknesses which might lead to easy 

statistical analysis of it. Our study shows that the DRPE 

encryption system in the discrete Gyrator domain has a 

very similar avalanche effect to that in the Fourier domain, 

which indicates potential risk from statistical analysis. On 

the other hand, it is verified that the photon counting 

DRPE in the Gyrator domain can greatly improve the 

avalanche effects and can enhance the security of the 

system since excellent avalanche effects can have the 

system be robust against statistical attacks. 

VII. CONCLUSION

In this study, we have evaluated the avalanche and bit 

independence characteristics of a double random phase 

encoding scheme in the discrete Gyrator domain. It is 

found that the DRPE in the Gyrator domain has a good 

bit independence property but does not possess excellent 

avalanche effects and would bring potential statistical 

attack risk to the encryption system. On the other hand, 

our experiment shows that the change of rotation angle in 

the discrete Gyrator domain can produce total different 

output that means the rotation angle can be viewed as an 

additional key and provides an additional layer of system 

security. Moreover, we have integrated the photon 

counting imaging technique into double random phase 

encoding in the Gyrator domain and it is verified that the 

photon counting imaging can improve the avalanche effect 

of DRPE in the Gyrator domain because the combined 

system achieves excellent avalanche effects. The analysis 

of avalanche effect and bit independence properties of the 

cryptosystems in the virtual optical domain can be 

regarded as an effective tool for the future design of the 

robust cryptosystems in computational optical domain 

instead of conventional digital block ciphers.
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