• Title/Summary/Keyword: Available transfer capability

Search Result 54, Processing Time 0.03 seconds

ATC Determination and Analysis Considering Voltage Constraints (전압제약을 고려한 가용송전용량 결정 및 분석)

  • Kim, Kyu-Ho;Park, Jin-Wook;Kim, Jin-O;Shin, Dong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.169-171
    • /
    • 2004
  • Available transfer capability(ATC) is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading in power transaction activities. This paper deals with an application of optimization technique for available transfer capability(ATC) calculation and analyzes the results of ATC by considering several constraints. Sequential quadratic programming(SQP) is used to calculate the ATC problem with state-steady security constraints. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

Reliability Assessment in Hea-nam Cheju HVDC system using Well-being Method (Well-being기법을 이용한 해남-제주간 HVDC System신뢰도평가)

  • Son, Hyun-Il;Lee, Hyo-Sang;Shin, Dong-Joon;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.227-229
    • /
    • 2004
  • In a new competitive market environment, it is very important to determines how much power can be transferred through the network. It's known as Available Transfer Capability(ATC). This paper presents a technique to evaluate Reliability Assesment and the Available Transfer Capability of Haenam-Cheju HVDC transmission system using Well-being Method which is based on the probabilistic method. The system Well-being is categorized in terms of the system Healthy and Marginal in addition to the conventional Risk index. Haenam-Cheju HVDC system has been studied for the optimal ATC based in well-being categories.

  • PDF

Application of Optimization Technique for Available Transfer Capability Caculation (가용송전용량 계산을 위한 최적화기법 응용)

  • Kim Kyu Ho;Shin Dong Joon;Kim Jin O;Kim Tae Kyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.183-185
    • /
    • 2004
  • This paper deals with an application of optimization technique for available transfer capability(ATC) calculation. ATC is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading. Sequential quadratic programming(SQP) is used to calculate the ATC problem with state-steady security constraints. The proposed method is applied to 10 machines 39 buses model systems. The results are discussed and compared to those obtained by continuation power flow(CPF).

  • PDF

Assessment of Total Transfer Capability Considering Transient Stability (과도 안정도를 고려한 총 송전용량 평가)

  • Park, Jin-Wook;Bae, In-Su;Kim, Jin-O;Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.94-99
    • /
    • 2005
  • This paper presents a method to assess total transfer capability(TTC) considering transient stability. TTC is limited not only by the violation of system voltage and thermal limits, but also restricted by transient stability limit, TTC calculation is divided into two processes. The frist step is to calculate TTC without considering the transient stability constraint by using repeated power flow(RPF) method. The second step is to perform transient stability analysis based on TTC calculation in the frist step.

Evaluation of Optimal Transfer Capability in the Haenam-Jeju HVDC System Based on Cost Optimization

  • Son Hyun-Il;Kim Jin-O;Lee Hyo-Sang;Shin Dong-Joon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.303-308
    • /
    • 2005
  • The restructure of the electrical power industry is accompanied by the extension of the electrical power exchange. One of the key pieces of information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). The traditional ATC deterministic approach is based on the severest case and it involves a complex procedure. Therefore, a novel approach for A TC calculation is proposed using cost optimization in this paper. The Jeju Island interconnected HVDC system has inland KEPCO (Korean Electric Power Corporation) systems, and its demand is increasing at the rate of about $\10[%]$ annually. To supply this increasing demand, the capability of the HVDC system must be enlarged. This paper proposes the optimal transfer capability of the HVDC system between Haenam in the inland and Jeju in Cheju Island through cost optimization. The cost optimization is based on generating cost in Jeju Island, transfer cost through Jeju-Haenam HVDC system and outage cost with one depth (N-1 contingency).

A Cost/Worth Approach to Evaluate UPFC Impact on ATC

  • Rajabi-Ghahnavieh, Abbas;Fotuhi-Firuzabad, Mahmud;Shahidehpour, Mohammad;Feuillet, Rene
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.389-399
    • /
    • 2010
  • Available transfer capability (ATC) is a measure of the transfer capability remaining in a transmission system. Application of unified power flow controllers (UPFCs) could have positive impacts on the ATC of some paths while it might have a negative impact on the ATC of other paths. This paper presents an approach to evaluate the impacts of UPFCs on the ATC from a cost/worth point of view. The UPFC application worth is considered as the maximum cost saving in enhancing the ATC of the paths due to the UPFC implementation. The cost saving is considered as the cost of optimal application of other system reinforcement alternatives (except for UPFC) to reach the same ATC level obtained by UPFC application. UPFC application costs include the maximum cost of alleviating the probable negative impact on the ATC of some paths caused by implementing UPFCs. Optimal system reinforcement is used for systems with UPFCs to determine the aforementioned cost. The proposed method is applied to the IEEERTS and the results are evaluated through a sensitivity analysis. The cost/worth of UPFC application is also used to develop an index for optimal UPFC location and the results are compared with those of other indices. A comparison is finally made with the results obtained using an existing ATC allocation profit-based approach to determine UPFC application worth.

Calculation of TTC and ATC considering dynamic thermal limit (동적 송전 용량을 적용한 총 송전용량 및 가용송전용량 산정)

  • Kim, Dong-Min;Bae, In-Su;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.360-362
    • /
    • 2006
  • 가용송전용량(Available Transfer Capability : ATC) 계산을 위해 우선 견정해야할 요소는 총 송전용량(Total Transfer Capability : TTC)이며 이는 일반적으로 열, 전압, 안정도 한계치에 의해 결정된다. 국내 계통의 송전선로 길이를 고려할 때, 이 세 가지 한계치 중 열 정격은 TTC 결정에 가장 큰 비중을 차지하는 요소이다. 따라서 본 논문은 열적 한계치에 동적 송전용량(Dynamic Line Rating : DLR)의 개념을 도입 하여 TTC를 결정하는 새로운 접근법을 제안한다. 이 방법은 기존의 방법에 비해 주변 환경의 물리적 변화에 따른 정확한 계산 결과를 제공함으로서, 실제 사용가능한 용량을 평가한다. 마지막으로 제안하는 방법의 유용성을 보이기 위해 IEEE-24 모선 RTS를 이용하여, 기존의 방법과 제안하는 방법을 비교하였다.

  • PDF

Calculate Transmission Reliability Margin using Probabilistic Load Flow (확률론적 조류계산을 이용한 송전 신뢰도 여유 계산)

  • Shin, Dong-Joon;Kim, Jin-O;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.569-571
    • /
    • 2003
  • As a definition of NERC, Available Transfer Capability(ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity. To calculate ATC, accurate and defensible TTC, CBM and TRM should be calculated in advance. In this paper, we propose a method to quantify TRM using probabilistic load flow based on the method of moment. Generation output, bus voltages, loads, and line outages are considered as complex random variables (CRV) to take into account for uncertainties related to the transmission network conditions. Probability Density Function (PDF) of line flow at the most limiting line is used to quantify TRM with the desired probabilistic margin. Suggested method is compared with the results from conventional CPF method and verified using 24 bus MRTS, and the suggested method based on PLF shows efficiency and flexibility for the quantification of TRM compared with the conventional method.

  • PDF

Evaluation of ATC in Haenam-Cheju HVDC System Using Cost Calculation (해남-제주간 직류송전시스템의 비용산정을 통한 ATC계산)

  • Son Hyun-Il;Lee Hyo-Sang;Shin Dong-Joon;Kim Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.193-198
    • /
    • 2005
  • As the electrical power industry is restructured, the electrical power exchange is extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost optimization in this paper Cheju Island interconnected HVDC system with mainland in KEPCO (Korean Electric Power Corporation) systems, and the demand of Cheju Island increases about 10 ($\%$) every year. To supply for increasing demand, the supply of HVDC system must be increased. This paper proposed the optimal transfer capability of HVDC system between Haenam in mainland and Cheju in Chju Island through cost optimization. The cost optimization is considered production cost in Cheju Island, wheeling charge through Haenam-Cheju HVDC system and outage cost with one depth (N-1 contingency)

A Study for ATC Computation Using an Energy Function Method (에너지함수법을 이용한 ATC 계산에 관한 연구)

  • Kim, Yang-Il;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.465-466
    • /
    • 2007
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. In many power systems, point-to-point transfer is not restricted by steady-state limits, but by undesirable dynamic behavior following large disturbance. In this paper, an energy function method for transient stability ATC computation is proposed, which utilizes a between the potential energy and energy function.

  • PDF