• Title/Summary/Keyword: Available soil phosphorus

Search Result 293, Processing Time 0.027 seconds

Dependence of 0.01 M CaCl2 Soluble Phosphorus upon Extractable P and P Sorptivity in Paddy Soil (논토양에서 유효인산 함량과 인산 흡수능에 따른 0.01 M CaCl2 가용 인산 농도 변화)

  • Jung, Beung-Gan;Yoon, Jung-Hui;Kim, Yoo-Hak;Kim, Seok-Hyeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.384-390
    • /
    • 2003
  • Removal of phosphate from soil by leaching, runoff, and plant uptake is strongly influenced by the content and absorption characteristics of P in soil. In this study the relationships between water soluble phosphate and phosphate retention capacity of the soil was investigated. Water soluble and available phosphate, and phosphate absorption characteristics of 35 paddy soils were measured during incubation at $25^{\circ}C$. Water soluble phosphate content was highly correlated with available phosphate content, phosphorus absorption capacity (PAC), and phosphate absorbed (PS) in air-dried and wet soils. The most significant relationship was found between water soluble phosphate and the ratio of available phosphate and phosphate sorbed, and the relationship $0.01M\;CaCl_2-P=0.0828$ (Av. $P_2O_5/PS$)+0.0374 could be suggested for the estimation of water soluble phosphate from soil phosphorus characteristics.

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

Mechanisms of Phosphate Solubilization by PSB (Phosphate-solubilizing Bacteria) in Soil (인산가용화 미생물에 의한 토양 내 인산이온 가용화 기작)

  • Lee, Kang-Kook;Mok, In-Kyu;Yoon, Min-Ho;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • Among the major nutrients, phosphorus is by far the least mobile and available to plants in most soil conditions. A large portion of soluble inorganic phosphate applied to soil in the form of phosphate fertilizers is immobilized rapidly and becomes unavailable to plants. To improve the plant growth and yield and to minimize P loss from soils, the ability of a few soil microorganisms converting insoluble forms into soluble forms for phosphorus is an important trait in several plant growth-promoting microorganisms belonging to the genera Bacillus and Pseudomonas and the fungi belonging to the genera Penicillium and Aspergillus in managing soil phosphorus. The principal mechanism of solubilization of mineral phosphate by phosphate solubilizing bacteria (PSB) is the release of low molecular weight organic acids such as formic, acetic, propionic, lactic, glycolic, fumaric, and succinic acids and acidic phosphatases like phytase synthesized by soil microorganisms in soil. Hydroxyl and carboxyl groups from the organic acids can chelate the cations bound to phosphate, thereby converting it into soluble forms.

Effect of the Application of Carbonized Biomass from Crop Residues on Soil Chemical Properties and Carbon Pools

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob;Choi, Yong-Su
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.549-555
    • /
    • 2015
  • Objective of this study was to investigate the effect of carbonized biomass from crop residues on chemical properties of soil and soil carbon pools during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. A pot experiment with soybean in sandy loam soil was conducted for 133 days in a greenhouse, by a completely randomized design with three replications. The treatments consisted of four levels including the control without input and three levels of carbonized biomass inputs of $9.75Mg\;ha^{-1}$, C-1 ; $19.5Mg\;ha^{-1}$, C-2 ; $39Mg\;ha^{-1}$, C-3. Soil samples were collected and analyzed pH, EC, TC, TN, inorganic-N, available phosphorus and exchangeable cations of the soils. Soil pH, Total-N and available phosphorus contents correspondingly increased with increasing the carbonized material input. The contents of soil carbon pools were $19.04Mg\;C\;ha^{-1}$ for C-1, $26.19Mg\;C\;ha^{-1}$ for C-2, $33.62Mg\;C\;ha^{-1}$ for C-3 and $12.01Mg\;C\;ha^{-1}$ for the control at the end of experiment, respectively. Increased contents of soil carbon pools relative to the control were estimated at $7.03Mg\;C\;ha^{-1}$ for C-1, $14.18Mg\;C\;ha^{-1}$ for C-2 and $21.62Mg\;C\;ha^{-1}$ for C-3 at the end of experiment, respectively, indicating that the soil carbon pools were increased with increasing the input rate of the carbonized biomass. Consequently, it seems that the carbonized biomass derived from the agricultural byproducts such as crop residues could increase the soil carbon pools and that the experimental results will be applied to the future study of soil carbon sequestration.

Studies on the Characteristics of Phosphorus in the Upland Soil -II. Relation of Soil Phosphorus and Some Soil Chemical Properties (경작지(耕作地) 전토양(田土壤)의 인산특성(燐酸特性)에 관(關)한 연구(硏究) -II. 토양(土壤) 인산함량(燐酸含量)과 몇가지 토양(土壤) 화학성(化學性)과의 관계(關係))

  • Shin, Cheol-Woo;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 1988
  • A laboratory experiment was coducted to investigate the relation of various soil phosphorus and some soil chemical properties which affect the composition of inoganic phosphorus and soil phosphorus with 149 phosphorus accumulated soil samples. Soil pH and exchangeable Ca were showed positively high significant correlation with 1.25 $N-NH_4$ OAc-P, Saloid-P, Ca-P and Total-P, however the soil pH was not showed significant relationship with $0.01M-CaCl_2-P$, Al-P, and Fe-P, respectively. Active Al and available phosphorus, water soluble P, and inoganic phosphorus were showed negatively high significant correlation, but Al-P and Fe-P were not. Also active Fe were showed positively significant correlation at 1% level for Fe-P and total-P. In the relationahips between soil pH and active Al, and exchangeable Ca, active Al were showed negatively high significant correlation with log regression equation, and exchangeable Ca were showed positively high significant correlation with liner regression equation. P sorbed by soil from p 20ppm solution was showed negatively high significant correlation with available phosphorus, water soluble P and $0.01M-CaCl_2-P$ in soil and positively with active Al, but was not significant with Ca-P.

  • PDF

Soil Organic Matter and Nutrient Accumulation at the Abandoned Fields

  • Park, Byung Bae;Shin, Joon Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.492-500
    • /
    • 2008
  • Since vegetation significantly influences on soil carbon and nutrient storage, vegetation change has been focused on terrestrial carbon and nutrient cycling studies. In this study we investigated soil carbon and major nutrient capitals at the abandoned fields, which had different vegetation composition: a three year abandoned field ($AGR_3$), two ten years abandoned fields ($PD_{10}$ dominant with Pinus densiflora and Fraxinus rhynchophylla and $PM_{10}$ dominant with Populus maximowiczii), and an over sixty years forest ($FOR_{60}$). which were located at Hongcheon-gun, Kangwon-do, South Korea. Both main effects for organic matter (%) were significant: shallow soil > deep soil and $FOR_{60}=PM_{10}$ > $AGR_3=PD_{10}$. Nitrogen concentrations at $PM_{10}$ were the highest, while the lowest at $PD_{10}$. Available phosphorus concentrations were the highest at $PD_{10}$, which were over 10 times of site $FOR_{60}$ and $AGR_3$ at 0-10 cm soil depth. The average organic matter ($173Mg\;ha^{-1}$) and nitrogen contents ($10Mg\;ha^{-1}$) of $PM_{10}$ and $FOR_{60}$ were higher than those of $AGR_3$ and $PD_{10}$ by 57% and 42%, respectively. The available phosphorus contents above 30 cm mineral soil at $PD_{10}$ ($3.8Mg\;ha^{-1}$) and $PM_{10}$ ($1.3Mg\;ha^{-1}$) were over 120 times and 40 times more than at $FOR_{60}$. Calcium ($3.7Mg\;ha^{-1}$) and magnesium contents ($2.8Mg\;ha^{-1}$) at $FOR_{60}$ were twice or three times higher than at other sites. Organic matter amounts in 0-10 cm and 10-30 em soil had significant positive relationships with nitrogen, calcium, and magnesium contents, but not available phosphorus and potassium contents. This study could not identify the effect of chronological factor and vegetation composition on soil carbon and nutrient capital owing to diverse topography as well as limited study sites. However, this study suggests the accuracy of investigation for regional carbon and nutrient sequestration can be achieved by considering the period of abandoned time on the fields and the land use types. These results may suggest the benefits of forest restoration for soil carbon and nutrient accumulation in marginal agricultural lands in South Korea.

Characterizing soils and the enduring nature of land uses around the Lake Chamo Basin in South-West Ethiopia

  • Zebire, Degife Asefa;Ayele, Tuma;Ayana, Mekonen
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.129-160
    • /
    • 2019
  • Background: Characterizing and describing soils and land use and make a suggestion for sustainable utilization of land resources in the Ethiopian Rift valley flat plain areas of Lake Chamo Sub-Basin (CSB) are essential. Objectives: To (1) characterize soils of experimental area according to World Reference Base Legend and assess the nature and extent of salinity problems; (2) characterize land use systems and their role in soil properties; and (3) identify best land use practices used for both environmental management and improve agricultural productivity. Methods: Twelve randomly collected soil samples were prepared from the above land uses into 120 composites and analyzed. Results: Organic carbon (OC) and total nitrogen (TN) were varied along different land uses and depleted from the surface soils. The soil units include Chernozems (41.67%), Kastanozems (25%), Solonchaks (16.67%), and Cambisols (16.67%). The identified land uses are annual crops (AA), perennial crops (PA), and natural forest (NF). Generally, organic carbon, total nitrogen, percentage base saturation (PBS), exchangeable (potassium, calcium, and magnesium), available phosphorus (P2O5), manganese, copper, and iron contents were decreased in cultivated soils. Soil salinity problem was observed in annuals. Annuals have less nutrient content compared to perennials in irrigated agriculture while it is greater in annuals under rainfed. Clay, total nitrogen, available phosphorus, and available potassium (K2O) contents were correlated positively and highly significantly with organic carbon and electrical conductivity. Conclusion: Management practices that improve soil quality should be integrated with leguminous crops when the land is used for annual crops production.

Estimation of Chemical Forms of Phosphate Released from the Paddy Soils with Different Effect of Phosphate Application (인산비옥도(燐酸肥沃度)가 상이(相異)한 답토양(畓土壤)에서 환원용출(還元溶出)되는 인산형태(燐酸形態)의 추정(推定))

  • Hong, Jung-Kuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 1982
  • 1. Solubility diagram was used to estimate Chemical form of the Soil phosphates which supply phosphorus into soil solutions under submerged condition with soils originated from granite and basalt rocks. The granite origin soils with different amounts of available phosphorus have no effect of phosphate application on rice yield, while the basalt origin soil has the big effect. 2. Almost same pattern of change in pH and concentrations of phosphorus and cations in the soil solutions during the submerging period was. shown. Almost no difference in the values was recognized between NPK and NK treatments of the granite origin soils, but the difference of the basalt origin soil was recognized. 3. it was estimated from solubility diagram that phosphorus concentration in the soil solutions was governed by phosphate applied and variscite in the soils for the early stage of submerging period, and then it became to be governed by vivianite in the soils.

  • PDF

Utilization and Quantitative Analysis Method of Available Phosphorus in Soils for Nak-Dong Rice (낙동(洛東)벼의 토양중(土壤中) 유효인산(有效燐酸) 이용(利用)과 그 정량방법(定量方法))

  • Kim, Yong Joo;Kim, Jin Ho;Park, Woo Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.59-67
    • /
    • 1987
  • The pot experiment was conducted using soils with varying contents of available phosphorus to select the reasonable method for determination of the available phosphorus content in soils for Nak-Dong rice cultivation. On a basis of the responses to the phosphorus tertilizer applied, the linear correlation coefficients by Bray No.1, Bray No.2, Lancaster, North Carolina and Olsen methods were 0.887, 0.868, 0.879, 0.952 and 0.911 for Nak-Dong rice yield, respectively. Of the methods tested, North Carolina method was the most suitable for determining, the phosphorus content in soils for Nak-Dong rice. The phosphorus application promoted the growth of Nak-Dong rice in pots for culm, tiller number, available stem and grain number per ear. Based on this experiment it could be presumed that the recommanded quantity of phosphorus fertilizer should attain to 5kg per 10a to promote the growth of Nak-Dong rice in A-soil and 10kg per 10a in B -, C - and D-soil. The results from the pot experiment will be somewhat different from those from the field experiment. Therefore, field experiment should be carried out for further information.

  • PDF

Effect of Compost and Gypsum Application on the Chemical Properties and Fertility Status of Saline-Sodic Soil

  • Sarwar, Ghulam;Ibrahim, Muhammad;Tahir, Mukkram Ali;Iftikhar, Yasir;Haider, Muhammad Sajjad;Noor-Us-Sabah, Noor-Us-Sabah;Han, Kyung-Hwa;Ha, Sang-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.510-516
    • /
    • 2011
  • Salt-affected soils are present in Pakistan in significant quantity. This experiment was conducted to assess the effectiveness of compost for reclamation and compare its efficiency with gypsum. For this purpose, various combinations of compost and gypsum were used to evaluate their efficacy for reclamation. A saline-sodic field having $pH_s$ 8.90, $EC_e$ $5.94dS\;m^{-1}$ and SAR $34.5(mmol\;L^{-1})^{1/2}$, SP (saturation percentage) 42.29% and texture Sandy clay loam, gypsum requirement (GR) $8.75Mg\;ha^{-1}$ was selected for this study. The experiment comprised of seven treatments (control, gypsum alone, compost alone and different combinations of compost and gypsum based on soil gypsum requirements). Inorganic and organic amendments (gypsum and compost) were applied to a saline sodic soil. Rice and wheat crops were grown. Soil samples were collected from each treatment after the harvest of both crops and analyzed for chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) and fertility status (organic matter, available phosphorus and potassium contents) of soil. Results of this study revealed that compost and gypsum improved chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) of saline sodic soil to the desired levels. Similarly, all parameters of soil fertility like organic matter, available phosphorus and potassium contents were built up with the application of compost and gypsum.