• Title/Summary/Keyword: Available safe egress time

검색결과 23건 처리시간 0.02초

Effects of High School Corridor Walking Obstacles on Evacuation Safety (고등학교 복도 보행 장애물이 피난 안전성에 미치는 영향)

  • Lee Soon Beom
    • Journal of the Korean Society of Safety
    • /
    • 제38권2호
    • /
    • pp.112-119
    • /
    • 2023
  • This study analyzes the effects of personal lockers, drinking fountains, and all-in-one shutters (hereinafter referred to as "corridor walking obstacles") on evacuation safety to suggest the necessity of operating a more effective educational facility safety certification system. To achieve this purpose, the five-story high school building with the obstacles installed in the corridor has been chosen, and evacuation tests through the Pathfinder Simulation Program have been carried out. When the evacuation exit is designated in the current state, where the students are placed on the 2nd, 3rd, and 4th floors and the corridor walking obstacles are applied as a variable, the required safe egress time (RSET) is 322 seconds. This can lead to dangerous results in the event of a disaster by exceeding the available safe egress time (ASET) standard of 240 seconds by 82 seconds. When students are placed on the 1st, 2nd, and 3rd floors under the same conditions, the RSET is 214.5 seconds, 25.5 seconds lower than the ASET standard, indicating that it is effective in reducing the impact of walking obstacles on evacuation time. The safety management plan for walking obstacles in the corridors is discussed, considering the special characteristics of the school corridors. The results of this study can be used as the necessary data for optimizing evacuation routes in corridors and creating a safe, educational environment.

Safety Assessment of the Evacuation at School Building by Escape Training and Simulation (학교건물에서 피난훈련과 시뮬레이션을 통한 피난안전성 평가)

  • Jeong, Mu-Heon;Lee, Beong-Gon
    • Fire Science and Engineering
    • /
    • 제22권3호
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, the evacuation training were performed in a high school building in Cheong-Ju and compared with the simulation program (Simulex). Also numerical analysis of room fire in school building was conducted by fire model (FDS, CFAST) and evaluated the available safe egress time for the safety assessment. As a result, the 8% of total egress persons were failed to escape at evacuation training and 40% of total egress persons were failed to escape at Simutex simulation. Simutex program was not reflected the real escape conditions, such as evacuation route, refuge place, etc.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

A Study on Evacuees Risk Assesment for Application of Spatial Risk Information (공간위험정보를 적용한 대피자 위험성평가에 관한 연구)

  • Hong, Seungbum;Jang, Jae-Soon;Park, Hyun-A;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • 제29권2호
    • /
    • pp.8-12
    • /
    • 2015
  • Performance Based Design is evaluating after each calculatiuon ASET and RSET. Risk informaion values such as heat, smoke, toxic gas etc are extracted by FDS in this study. These Risk informaion values by FDS apply Artisoc (evacuation simulator). Building structure made $60m{\times}65m$, exit number is made 2 positions and people in this building are 50 ramdonly. 20 times (case1~case 20) simulated and analysis evacuees risk by evacuated route positions.

A Study on ASET Elongation & Notification Time to Fire Stations for the Escape Safety of Aged Bedridden Patients in Elderly Long-term Medical Care (노인의료복지시설 화재 시 와상노인의 피난안전성 제고를 위한 피난허용시간 연장과 소방기관으로의 통보시간 연구)

  • Park, Hyung-Joo;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • 제32권4호
    • /
    • pp.50-59
    • /
    • 2018
  • Recently, huge life losses occurred in the elderly long-term medical care fires due to lack of escape safety. As part of the measures to enhance the effectiveness of fire escape safety, while they prolong the available safe egress time (ASET) of non fire compartments, a measure to shorten fire-fighter's arrival time by fire alarm notifying device should be implemented in these facilities. The four categories from the aspects of fire prevention/protection engineering were provided with the necessary component technologies for carrying out these helper-guided evacuations. Fire prevention engineered technology was presented by two provisions; one for ensuring small compartment sections by installing the fire rated wall between bed rooms and another for ensuring the fire retardant or/and non-flammable performance of finishing materials. Also fire protection engineered technology was presented by two items; one for imposing cooling effects by sprinklers and another for providing automatic fire alarm notifying functions to fire stations. In order to improve the escape safety of these facilities in Korea, alternative revisions may presented by considering insufficient provisions in the architectural/fire law provisions by analyzing the provisions of Japanese and domestic laws in detail.

Study on the Available Safe Egress Time (ASET) Considering the Input Parameters and Model Uncertainties in Fire Simulation (화재시뮬레이션에서 입력변수 및 모델 불확실도가 고려된 허용피난시간(ASET)에 관한 연구)

  • Han, Ho-Sik;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • 제33권3호
    • /
    • pp.112-120
    • /
    • 2019
  • To improve the reliability of a safety assessment using a fire simulation in domestic PBD, the evaluation method of ASET considering the uncertainties of the input parameters and numerical model of fire simulation was carried out. To this end, a cinema and officetel were selected as the representative fire spaces. The main results were as follows. Considering the uncertainty of the heat release rate, which has the greatest effect on the major physical quantities presented in the life safety standard, significant changes in temperature, CO, and visibility occurred. In addition, when the bias factors reflecting the uncertainty of the numerical model were applied, there were no significant changes in temperature and CO concentration. On the other hand, the visibility was increased considerably due to the low prediction performance of smoke concentration in FDS. Finally, the reason why the physical quantity determining the ASET in domestic PBD is mainly visibility was discussed, and the application of uncertainty of the input parameters and numerical model in a fire simulation was suggested for an accurate ASET evaluation.

Performance-based Fire Protection Design of Domestic Super High-rise Buildings - Evaluation by ASET and RSET -

  • Roh, Hyeong-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제11권2호
    • /
    • pp.9-13
    • /
    • 2011
  • The Performance-based fire protection design required to construct super high-rise building is the active measure for the evaluation of fire risks and the establishment of fire protection systems on the basis of engineering analysis, which is more efficient and proper than existing prescriptive-based design. This study applied time-line analysis of RSET is required safe egress time and ASET is available safe egress time with the fire and evacuation simulation to analyze. The result of this study showed the sprinkler system increased ASET and fire detection and alarm system reduced RSET efficiently. Reduced evacuation time influences to secure the life safety. Also it is essential to maintain the fire suppression system and fire detection & alarm system properly. Database of fire movement and evacuation action program are useful for the performance-based design.

Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex (복합영상관 단일 가연물의 디자인 화재곡선 평가)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong;Oh, Chang Bo;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • 제34권3호
    • /
    • pp.18-27
    • /
    • 2020
  • An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).

Simulation of Fire in Large Cleanrooms (대규모 클린룸 화재의 시뮬레이션)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • 제28권3호
    • /
    • pp.29-33
    • /
    • 2014
  • Cleanroom fires were simulated by using Fire Dynamics Simulator. A grid size of $0.5{\times}0.5{\times}0.2m^3$ was selected following review of grid sizes. Fires in three large cleanrooms were investigated to confirm safety by applying the requirements on temperature, visibility, and carbon monoxide concentration in performance based design. The worst situation without sprinkler system and air flow of 0.1 m/s downward in the cleamrooms was considered. It was confirmed that all the three cleanrooms were safe in case without sprinklers since the temperature was below the safety requirement. Decrease in visibility and carbon monoxide concentration due to the fires were negligible.

Analysis of RSET According to Exit Installation Standards for the Exterior of a Food Manufacturing Plant Building (식품공장 건축물 바깥쪽으로의 출구 설치기준에 따른 RSET 분석)

  • Park, Ha-Soung;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • 제10권2호
    • /
    • pp.201-208
    • /
    • 2024
  • In this study, we investigated whether the evacuation time according to the exit installation standards specified in the building code during a food factory fire is compatible with the evacuation time based on the performance-based design specified by the fire department, in order to determine if evacuation safety is ensured. We used the Pathfinder program to confirm the evacuation time, and experimented with three scenarios for exit installation standards towards the outside of the building: 60m, 80m, and 100m. The target building in the experiment corresponded to the building code's exit installation standard of 100m from each dwelling. The experimental results showed tt in the cases of 80m and 100m, ASET exceeded RSET, indicating tt evacuation safety was not ensured, while in the case of 60m, evacuation safety was maintained. Through this study, it was confirmed tt even when the exit installation standards towards the outside of the building are met, evacuation safety may not be guaranteed.