• Title/Summary/Keyword: Available heavy metal

Search Result 101, Processing Time 0.022 seconds

Heavy Metal Uptake by Balloon Flower Together with Investigating Soil Properties and Heavy Metal Concentrations in the Cultivated Soils

  • Bae, Jun-Sik;Seo, Byoung-Hwan;Lee, Sin-Woo;Kim, Won-Il;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.172-178
    • /
    • 2014
  • Soil properties and heavy metal (HM) concentrations in the field soils where balloon flowers (Platycodon grandiflorum, BF) were cultivated, were investigated together with HM (Cd, Cu, Pb, and Zn) accumulation by the BF roots. Basically, in most soils examined (51-97% among 65 samples), the chemical properties including soil pH, organic matter, available-P, and exchangeable cation contents appeared to be lower than the optimal ranges for balloon flower cultivation. There were no samples exceeding the standard limits for HM in soils. Instead, the total HM concentration levels in soils appeared to be maintained at around background levels for general soil in Korea. This implied that elevated HM accumulation in the soils caused by any possible input sources was unlikely. Even though the BF cultivated soils were not contaminated by HM, it was appeared that substantial amount of Cd was accumulated in BF roots with 1.5% and 35% roots samples exceeding the standard limits legislated for BF root ($0.81mg\;kg^{-1}DW$) and herbal plants ($0.3mg\;kg^{-1}DW$), respectively. This implied that the soil HM standard limits based on the total concentration does not reflect well the metal accumulation by plants and also it is likely that the Cd standard limits for BF and herbal plants is too restrict.

Heavy Metal Pollution in Sub-Saharan Africa and Possible Implications in Cancer Epidemiology

  • Fasinu, Pius Sedowhe;Orisakwe, Orish Ebere
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3393-3402
    • /
    • 2013
  • The increasing scourge of cancer epidemiology is a global concern. With WHO emphasizing that 40% of all cancer cases are preventable, exposure to known and suspected carcinogens must be discouraged. The battle with communicable diseases and other third world challenges has greatly de-emphasized anti-cancer campaigns in sub-Saharan Africa. The abundant deposit of mineral resources in sub-Saharan Africa has attracted high mining activity with its negative environmental aftermath. Poor regulatory mechanisms have led to environmental contamination by products of mining including heavy metals. In addition to poor urban planning, the springing up of settlements in industrial areas has led to generation and exposure to more hazardous wastes consequent on poor disposal systems. Studies establishing close association between exposure to heavy metals and cancer epidemiology in sub-Saharan Africa are increasing. The current review assesses the level of environmental pollution by heavy metals in sub-Saharan Africa, and brings to the fore available evidence implicating such in the increasing cancer epidemiology in the sub-continent.

Effect of Rotary Drum on the Speciation of Heavy Metals during Water Hyacinth Composting

  • Singh, Jiwan;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • Studies were carried out on the speciation of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during rotary drum composting of water hyacinth (Eichhornia crassipes) for a period of 20 days. Five different proportions of cattle manure, water hyacinth and sawdust were prepared for composting. This study concluded that, rotary drum was very efficient for the degradation of organic matter as well as for the reduction of mobility and bioavailability of heavy metals during water hyacinth composting. The results from the sequential extraction procedure of heavy metals shows that rotary drum composting changed the distribution of five fractions of Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr. The highest reduction in the bioavailability factors of Pb and Cd was observed during the process. The total concentration of Cu, Cr, and Cd was very low compared to the other metals (Zn, Mn, Fe, Ni, and Pb); however, the percentage of exchangeable and carbonate fractions of these metals was similar to other metals. These results confirmed that the bioavailability of metals does not depend on the total concentration of metals. From this study, it can be concluded that the addition of an appropriate proportion of cattle manure significantly reduced the mobile and easily available fractions (exchangeable and carbonate fractions) during water hyacinth composting in rotary drum.

Using Liquid Aluminum Chloride to Reduce Heavy Metals from Animal Wastes (액상염화알루미늄을 이용한 축산 폐기물 속의 중금속 저감 효과)

  • Kim, Chang-Mann;Choi, Jung-Hoon;Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.377-382
    • /
    • 2012
  • Recent research has demonstrated that treating poultry litter with alum (aluminum sulfate) and aluminum chloride can remove environmental threats (ammonia, soluble phosphorus and odor) posed by litter. However, scientific information available on heavy metal in poultry litter with liquid aluminum chloride is still lacked. The purpose of this study was to investigate the effects of applying liquid aluminum chloride to rice hulls on heavy metals and to provide basic information to producers. Six hundred 0-d-old broiler were assigned to 4 treatments (control, 100 g, 200 g and 300 g of liquid $AlCl_3$/kg of rice hulls, respectively) with 3 replicates of 50 birds. The experimental period lasted for 6 weeks. Liquid $AlCl_3$ was sprayed on the rice hulls surface using a small hand pump. Total Al contents increased (P<0.05) with the increasing levels of liquid $AlCl_3$ levels over time in comparison with control groups. Total Cu and Pb were lowered in all liquid $AlCl_3$ treatments compared with the controls during 6 weeks. Significant differences in all treatments were found for total Cu contents at 2, 3 and 5 weeks and total Pb at 0, 1, 2 and 3 weeks. Total Zn contents decreased with time when compared with controls. However, no significant differences in total Zn contents were observed among all treatments. In light of environmental managements, spraying liquid $AlCl_3$ to rice hulls indicated the significant advantages in reducing heavy metals as well as improving poultry industrial competitiveness.

Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea (중부지역 과수원 토양중의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • Objectives of this study were to monitor the distribution of heavy metals, to compare extractable heavy metal with total content and to investigate the relationships between soil physico-chemical properties and heavy metals in orchard soil. Sampling sites were 48 in Gyeonggi, 36 in Gangwon, 36 in Chungbuk, and 44 in Chungnam, Soils were collected farm form two depths, 0 to 20 and 20 to 40 cm (here after referred to as upper and lower layers) from March to May in 1998. Total contents of heavy metal in soils were analyzed by ICP-OES after acid digestion ($HNO_3$:HCl:$H_2O_2$) whereas extractable contents were measured after successive extraction of 0.1N-HCl, 0.05 M-EDTA, and 0.005 M-DTPA. Mercury was analysed by mercury atomizer. The average contents of Cd Cu, and Pb in the extractant with 0.1N-HCl at upper layer were 0.080, 4.23, and 3.42 mg/kg, respectively. As content in the extractant with 1N-HCl was 0.44 mg/kg, and total contents of Zn, Ni and Hg were 78.9, 16.1, and 0.052 mg/kg, respectively. The ratios of concentrations of heavy metals to threshold values (Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/ke in Soil Environmental Conservation Act in Korea (2001) were low in the range of $1/2.5{\sim}1/76.9$ in orchard soils. The ratios of extractable heavy metal to total content ranged $5.4{\sim}9.21%$ for Cd, $27.9{\sim}47.8%$ for Cu, $12.6{\sim}21.8$% for Pb, $15.8{\sim}20.3%$ for Zn, $5.3{\sim}6.3%$ for Ni, and $0.7{\sim}3.6%$ for Zn, respectively. Cu and Pb contents in 0.05 M-EDTA extractable solution were higher than those in the other extractable solution. Total contents of Cd, Ni and Ni in soils were negatively correlated with sand content but positively correlated with silt and clay contents. Ratios of extractable heavy metal to total content were negatively correlated with clay content but ai and Ni contents were positively correlated with soil pH, organic matter, and available phosphorous. Therefore, the orchard soil was safe because the heavy metal contents of orchard soil were very low as compared to its threshold value in the Soil Environmental Conservation Act. However, it need to consider the input of agricultural materials to the agricultural land for farming practices for assessment of heavy metals.

Heavy Metal Contents of Vegetables from Korean Markets (국내에서 유통 중인 채소류의 중금속 함량에 관한 연구)

  • Yoo, Ha-Young;Jung, Jin-Joo;Choi, Eun-Ju;Kang, Sung-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.502-507
    • /
    • 2010
  • This study estimated the heavy metal contents of vegetables grown in Korea (n=234). The samples were digested using the microwave method. The contents of heavy metals (Pb, Cd, As, Cr, Cu, Mn, and Zn) were determined using inductively-coupled plasma spectrometry (ICP). The average values of heavy metals in vegetables were as follows [mean (minimum-maximum), mg/kg)]; Pb 0.0026 (ND-0.0313), Cd 0.0017 (ND-0.0280), As 0.0005 (ND-0.0332), Cr 0.0156 (0.0010-0.1798), Cu 0.3767 (0.0556-1.3980), Mn 3.0214 (0.0182-26.4100), and Zn 3.5796 (0.8300-14.4600). The heavy metal contents of vegetables available on the domestic market were almost the same as or lower than those reported in other studies. Further, the weekly average intake of heavy metals was lower than the Provisional Tolerable Weekly Intake (PTWI) or the Provisional Maximum Tolerable Daily Intake (PMTDI), which was established by the FAO/WHO. Our results can be utilized as a reference to establish specific standards for various vegetables in Korea.

Pb Biosorption by Saccharomyces cerevisiae (Saccharomyces cerevisiae에 의한 Pb 생체흡착)

  • 안갑환;서근학
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • The contamination of the environment by heavy metals results in a serious public health problem due to the toxicity of those pollutants even at low concentrations. Microorganisms may be used to remediate wastewaters contamlialtd with heavy metals. The waste S. cerevisiae is an inexpensive readily available source of biomass for bioremediation of wastewater. S. cerevisiae was investigated for their ability to absorb Pb. The crushed biomass of S. cerevisiae exhibited higher Pb uptake capacity than the living S. cerevisiae and the sterilized S. cerevisiae. At the same metal concentration, metal uptake per unit concentration or adsorbent decreased when the biomass concentration rises. The order of the biosorption capacity of the living S. cerevisiae was Pb>Cu>Cd=Co>Cr. When S. cerevisiae was pretreated with 0.1 M NaOH, Pb uptake was increased by 150 percent and 0.1 M HC1, 0.1 M $H_2S_O4$ solutions were efficient in the desorption of Pb. The sorption equilibrium of Pb ions can be described by the Freundlich and Langmuir models.

  • PDF

Effects of the application of Sewage Sludge on the Growth of Chinese Cabbage(Brassica campestris L.) and Changes in Soil Chemical Properties. (불수 sludge 시용이 배추의 생육과 토양의 화학성 변화에 미치는 영향)

  • 김수영;조경철;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 2001
  • This study was conducted to investigate the effect of sewage sludge application on the growth of chinese cabbage and the changes of chemical properties of soil. The experiment were set up with two different place and cultivated from Feb. 10 to June. 20 of 2000. Treatments are 0, 1.25, 2.5, 5, 10 and 20kg/3.3$\m^2$ of sewage sludge applicated into the soil and recorded the growth characteristics. Chemical properties of soil were also analysed before and after treatment. The application of the sewage sludge resulted in increasing the content of EC, cations exchange capacity, available phosphate and organic matter. And increased the growth characteristics in terms of the number of leaves, leaf area, fresh and dry weight regardless of crops experiments. Optimum amount of the sewage sludge depended on chemical properties of soil used. This results demonstrated that application of sewage sludge in the soil attribute to have play an important both improving soil chemical properties and promoting the crop growth. As lowering the soil pH(pH 6) heavy metal content increased compared with higher pH(pH 7). Feasibility was recognized in the application of sewage sludge as a fertilizer for the growth of chinese cabbage. Detrimental effects such as heavy metal in the soil and crop followed by the application of sewage sludge was not observed.

  • PDF

Biosorption of Pb and Cr by Using Sargassum thunbergii (모자반(Sargassum thunbergii)을 이용한 Pb 및 Cr 제거)

  • CHO Moon-Chul;AHN Kab-Hwan;SUH Kuen-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.153-157
    • /
    • 2005
  • The biosorption of Pb and Cr by Sargassum thunbergii was investigated in a batch conditions. The Pb and Cr uptake capacity of Sargassum thunbergii was 232.5 mg Pb/g biomass and 91.6 mg Cr/g biomass, respectively. An adsorption equilibria was reached within about 0.5 hr for both the Pb and the Cr. The adsorption parameters for both the Pb and the Cr were determined according to the Langmuir and Freundlich model. With increasing pH values, more negative sites are becoming available for the adsorption of Pb and Cr. The selectivity of mixture solution showed an uptake order of Pb>Cu>Cr>Cd. Pb and Cr adsorbed by S. thunbergii could be recovered ken 0.1 M HCl, 0.1 M $HNO_3$ and 0.1M EDTA by a desorption process, and the efficiency of Pb desorption was above $95.8\%$, whereas the efficiency of the Cr desorption was below $50.7\%$.

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF