• Title/Summary/Keyword: Available Chlorine

Search Result 51, Processing Time 0.026 seconds

A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater (무격막식 해수 전기분해 방식을 통한 배연 탈질에 관한 연구)

  • Kim, Tae-Woo;Choi, Su-Jin;Kim, Jong-Hwa;Song, Ju-Yeong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.825-829
    • /
    • 2012
  • In this study, we investigated NO oxidation characteristic that depends on available chlorine concentration and temperature of seawater which is treated by un-divided electrolysis. Reactant gas passed through bubbling reactors which is filled with electrolyzed water and then NO concentration change was analyzed. In the closed-loop electrolysis system, concentration of available chlorine increased with electrolysis time. The higher oxidation rate of NO to $NO_2$ was obtained with the higher concentration of available chlorine. Oxidation of NO was fast when temperature of electrolyzed water was high, in the case of same concentration of available chlorine.

Effect on Colony Growth Inhibition of Soil-Borne Fungal Pathogens by Available Chlorine Content in Sodium Hypochlorite

  • Lee, Sung-Hee;Shin, Hyunman;Kim, Ju-Hyoung;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.156-163
    • /
    • 2019
  • Our study investigated the available chlorine content, contact time and difference among strains of each pathogen for sodium hypochlorite (NaOCl) to control chemically against soil-borne fungal pathogens, such as Phytophthora rot by Phytophthora cactorum, violet root rot by Helicobasidium mompa, and white root rot by Rosellinia necatrix, causing die-back symptom on apple trees. As a result, the colony growth of Phytophthora cactorum was inhibited completely by soaking over 5 s in 31.25 ml/l available chlorine content of NaOCl. Those of H. mompa and R. necatrix were inhibited entirely by soaking over 160 s in 62.5 and 125 ml/l available chlorine content in NaOCl, respectively. Also, inhibition effect on available chlorine in NaOCl among strains of each soil-borne pathogen showed no significant difference and was similar to or better than that of fungicides.

Disposable in-field electrochemical potable sensor system for free available chlorine (FAC) detection

  • Chang, Seung-Cheol;Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.449-456
    • /
    • 2007
  • The work described in this study concerns the development of a disposable amperometric sensor for the electrochemical detection of a well-known aqueous pollutant, free available chlorine (FAC). The FAC sensor developed used screen printed carbon electrodes (SPCEs) coupled with immobilised syringaldazine, commonly used as an indicator in photometric FAC detection, which was directly immobilised on the surface of SPCEs using a photopolymer PVA-SbQ. To enable in-field analysis of FAC, a prototype hand-held electrochemical analyzer has been developed to withstand the environment with its rugged design and environmentally sealed connections; it operates from two PP3 (9 volt) batteries and is comparable in accuracy and sensitivity to commercial bench top systems. The sensitivity of the FAC sensor developed was $3.5{\;}nA{\mu}M^{-1}cm^{-2}$ and the detection limit for FAC was found to be $2.0{\;}{\mu}M$.

Analysis of the Contents in Stabilized Chlorine Dioxide (안정화 이산화염소의 성분분석)

  • Shin, Ho-Sang;Oh-Shin, Yun-Suk
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.403-407
    • /
    • 1999
  • A method for detecting chlorine dioxide in drinking water was developed by the modified iodometric titration. This method requires prior removal of interfering chemicals such as chlorine and/or other oxidants: the interferents are removed by $N_2$ purging. Chlorite and chlorate were successfully quantified by the ion chromatography-conductivity detection. Stabilized chlorine dioxide that is commercially available contained only traces of chlorine dioxide (0.01-0.09%). In reality, its main component is chlorite.

  • PDF

A Study on the Characteristics of Chloramination as an Alternative Disinfectant in Drinking Water (클로라민의 소독특성에 관한 연구)

  • Kim, Pung-Chung;Woo, Dal-Sik;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.77-82
    • /
    • 1999
  • This study was carried to investigate the characteristics of chloramination as a disinfection in drinking water distribution system. The raw water comes from midstream of Han river. In the range of pH 6~8, preformed chloramine of $Cl_2/NH_3-N$ ratio 5:1 had the HPC inactivation of more than 99% with lower pH and shorter contact time and available chloramine residual was decreased a little. In the chloramines of $Cl_2/NH_3-N$ ratio 3:1~5:1, the higher $Cl_2/NH_3-N$ ratio, the much inactivation of HPC was increased, but as contact time was longer, HPC inactivation of $Cl_2/NH_3-N$ ratio 3:1~5:1 were equaled. Bactericidal activity of three chlorine and postammoniation was influenced by free available chlorine completely and that of preammoniation was as follows : free chlorine ${\fallingdotseq}$ postammoniation>preammoniation>preformed chloramine.

  • PDF

A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis (해수 전기분해를 적용한 배연 탈질 기술에 관한 연구)

  • Kim, Tae-Woo;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.570-576
    • /
    • 2012
  • In this study, we investigated the characteristics of NO oxidation using un-divided electrolyzed seawater as oxidant. The concentration of available chlorine and the temperature of electrolyzed seawater are increased with electrolysis time in the closed-loop constant current electrolysis system. While NO gas flow through bubbling reactor which is filled with electrolyzed seawater, the oxidation rate of NO to $NO_2$ is increased with the concentration of available chlorine and the temperature. $NO_2$, generated by oxidation reaction, is dissolved in electrolyzed seawater and existed as $HNO_3{^-}$ ion.

A Study on the Detection Behavior of Chlorine Dioxide on Metal Oxide Sensors (금속산화물센서의 이산화염소 가스에 대한 감지거동에 관한 연구)

  • Yu, Joon-Boo;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.211-214
    • /
    • 2020
  • Chlorine dioxide is very effective gas for sterilization or disinfection (in manufacturing), and does not produce harmful by-products after use. However, if its concentration exceeds 10 %, it become explosive and cannot be compressed or stored. Therefore, it is necessary to measure its concentration. In this study, the concentration of chlorine dioxide with a high oxidizing strength was measured using a metal oxide sensor. The sensor was a commercially available TGS series from Figaro. The sensitivity of the sensor was inversely proportional to a low concentration of chlorine dioxide gas below 6 ppm and returned to the initial resistance at about 6 ppm. When the gas concentration reached multiples of 10 ppm, resistance of the sensor increased to several megaohms.

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF

Efficacy of chlorine and lactic acid for reducing pathogenic and spoilage microorganisms on chicken skin (닭고기에서 병원성 및 변질미생물의 감소를 위한 염소와 유산의 병용처리 효과)

  • 이철현;변유성;황보원;강호조
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.4
    • /
    • pp.411-418
    • /
    • 1999
  • In this studies, the ability of chlorine and lactic acid to reduce bacterial population of the pathogenic microorganisms were examined on artificially inoculated chicken skin. About 10$^{5}$ cells of staphylococcus aureus, salmonella enteritidis, listeria monocytogenes and escherichia coli O157:H7 were inoculated in chicken skin. The contaminated samples were washed for 1 min with sodium hypochlorite solutions that contained 2, 5, 10, 20 and 50mg/$\ell$ available chlorine and counted number of the agents. Viable population were no significantly difference (p$\geq$0.05) between concentration of chlorine and strains of the pathogens. In the samples inoculated with pathogens were washed in 20mg/$\ell$ chlorine and then stored at $^5{\circ}C$ for up to 10 days, the initial counts of psychrotrophs and aerobic plate counts were 4.02 to 4.36 log cfu/$\textrm{cm}^2$ and increased slightly in course of time. But 10 days after, the pathogens were a little reduced from 3.66~4.91 log cfu/$\textrm{cm}^2$ to 2.54~4.66 log cfu/$\textrm{cm}^2$. In the case of washed skin with solution of 20mg/$\ell$ chlorine and 0.5% lactic acid then store at $^5{\circ}C$ for up to 10 days, population of psychrotrophs and aerobic plate counts on chicken skin were markedly reduced immediately after treatment, but the numbers of contaminants were slightly increased after 6 and 8 days. Specifically, numbers of St aureus, S enteritidis, L monocytogenes and E coli O157:H7 were reduced to 0.5, 0.4, 0.3 and 1.15 log cfu/$\textrm{cm}^2$ after 10 days of storage, respectively, on aerobic plate counts.

  • PDF

The Influence of Chlorine Application on Corrosion and Bacterial Growth in Home Plumbing Systems (급수관내 염소 주입이 미생물의 증식과 부식에 미치는 영향)

  • Kim, Tae-Hyun;Lee, Yoon-Jin;Lim, Seung-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.431-439
    • /
    • 2006
  • This research was conducted using a model home plumbing system composed of copper, stainless steel, galvanized iron, carbon steel, and PVC (polyvinyl chloride) pipe. The number of bacteria present in stainless steel pipe and PVC was higher than other pipes. High turbidity and zinc release were found in galvanized iron pipe material and detected during the first 6 months. Conversely, there was a decrease in turbidity and zinc release after 6 months resulting in levels similar to other pipes. Copper concentration decreased as operation times increased. In this experiment, the number of bacteria detected in biofilm for a copper pipe continued to increase. Pipe material influenced bacterial numbers in biofilm and water. This showed that elevated chlorine could not control bacterial growth in biofilm for galvanized iron and stainless steel systems. It also suggested that the dosing of chlorine might not be available for all kinds of pipes. Therefore, another complementary method should be introduced to manage biofilm effectively in water distribution systems.