• Title/Summary/Keyword: Availability of groundwater

Search Result 45, Processing Time 0.024 seconds

Estimation of Groundwater Availability by Using the SWAT-K Model in Yeoncheon District, South Korea (SWAT-K 모형을 이용한 연천지역의 지하수 개발가능량 추정)

  • Jeong Eun Lee;Min-Gyu Kim;Il-Moon Chung
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.263-277
    • /
    • 2024
  • The availability of groundwater in the Yeoncheon area, South Korea, was estimated using the distributed hydrological model SWAT-K to calculate recharge rates based on land use and soil distribution. Model calibration and validation results were consistent between observed and simulated streamflows, with coefficients of determination of 0.75~0.97. Calculated groundwater recharge rates varied temporospatially, with lower rates in winter and spring than in summer. Estimated recharge rates were compared with the baseflow index of natural streamflow to assess the validity of estimated recharge amounts. Groundwater development potential was determined by calculating the recharge amount for a 10-year period by statistical frequency analysis, confirming it to be 11.5% of annual precipitation.

Nitrate Contamination of Shallow Groundwater in an Agricultural area having Intensive Livestock Facilities (축사가 밀집된 농촌지역 천부지하수의 질산염 오염특성)

  • 김연태;우남칠
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.57-67
    • /
    • 2003
  • Nitrate contamination by human activities is a serious problem to water-supply in agricultural area. Shallow groundwater is the main source of water-supply, but it is very sensitive to contamination. Study area for nitrate contamination is a region of Iljuk, Kyunggi where is an agricultural area having many livestock facilities in various scales. As a result, the points having availability of incoming of external contaminant are 77%, and the ones over the Drinking Water Limit (DWL) are 32~42%. For a nitrogen isotope analysis, all the points having availability of incoming of external contaminant have $\delta$$^{15}$ N-NO$_3$ values over 5$\textperthousand$, and the points of 59% are strongly affected by nitrogen originated from animal wastes. The major source of nitrate in this area is intensive livestock facilities. Even though a livestock facility had enclosed, it affects groundwater quality for a long time. The chemical property of contaminant source is various according to animal species in surface water, but not in groundwater since some solutes are removed by reactions during an inflow to subsurface.

Numerical Analysis of Horizontal Collector Well in Riverbank Filtration (수평 방사형 집수정 활용 강변여과 취수 수치 분석)

  • Kim, Hyoung-Soo;Jeong, Jae-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Groundwater flow due to intake of horizontal collector well in riverbank filtration site was analyzed by use of numerical groundwater modeling program (FEFLOW 5.1). Drawdowns of groundwater table nearby collector well were evaluated according to variations of several conditions; pumping rate, thickness of aquifer, offset distance from well to shore line of stream, conductance of streambed. It is observed that the drawdowns of groundwater table are clearly changed according to the variations of these conditions. The results of sensitive analysis shows that the thickness of alluvial aquifer and the offset distance are more sensitive than the conductance of streambed in evaluation of drawdown. This result implies that hydrogeological conditions, as like thickness of aquifer and its distribution in the site are important factors in site selection and evaluating the availability of riverbank filtration intake using horizontal collector well system. It is also revealed that numerical modeling using FEFLOW with 1-D discrete element feature can give efficient quantitative evaluation of horizontal collector well and estimation of availability of riverbank filtration site.

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

Impact of Climate Change on the Groundwater Recharge and Groundwater Level Variations in Pyoseon Watershed of Jeju Island, Korea (기후 변화에 따른 제주도 표선 유역의 함양률 및 수위변화 예측)

  • Shin, Esther;Koh, Eun-Hee;Ha, Kyoochul;Lee, Eunhee;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.22-35
    • /
    • 2016
  • Global climate change could have an impact on hydrological process of a watershed and result in problems with future water supply by influencing the recharge process into the aquifer. This study aims to assess the change of groundwater recharge rate by climate change and to predict the sustainability of groundwater resource in Pyoseon watershed, Jeju Island. For the prediction, the groundwater recharge rate of the study area was estimated based on two future climate scenarios (RCP 4.5, RCP 8.5) by using the Soil Water Balance (SWB) computer code. The calculated groundwater recharge rate was used for groundwater flow simulation and the change of groundwater level according to the climate change was predicted using a numerical simulation program (FEFLOW 6.1). The average recharge rate from 2020 to 2100 was predicted to decrease by 10~12% compared to the current situation (1990~2015) while the evapotranspiration and the direct runoff rate would increase at both climate scenarios. The decrease in groundwater recharge rate due to the climate change results in the decline of groundwater level. In some monitoring wells, the predicted mean groundwater level at the year of the lowest water level was estimated to be lower by 60~70 m than the current situation. The model also predicted that temporal fluctuation of groundwater recharge, runoff and evapotranspiration would become more severe as a result of climate change, making the sustainable management of water resource more challenging in the future. Our study results demonstrate that the future availability of water resources highly depends on climate change. Thus, intensive studies on climate changes and water resources should be performed based on the sufficient data, advanced climate change scenarios, and improved modeling methodology.

Development of a Hydrological Drought Index Considering Water Availability (수자원 가용능력을 고려한 수문학적 가뭄지수의 개발)

  • Park, Min-Ji;Shin, Hyung-Jin;Choi, Young-Don;Park, Jae-Young;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.165-170
    • /
    • 2011
  • Recently natural disasters such as the frequency and intensity of drought have been increasing as a result of climate change. This study suggests a drought index, WADI (Water Availability Drought Index), that considers water availability using 6 components (water intake, groundwater level, agricultural reservoir water level, dam inflow, streamflow, and precipitation) using the Z score and data monitoring on a nationwide level. SPI (Standardized Precipitation Index) was applied in coastal area. For the severe droughts of 2001 spring and 2008 autumn, the index was evaluated by comparison with reported damage areas. suggested to combine The spatial concordance rate of WADI in 2001 and 2008 for estimation of the degree of drought severity was 50 % and 24 % compared to the actual recorded data respectively.

An Experimental Study on Denitrification Efficiency of Agricultural Byproducts for Prevention of Nitrate Contamination from LID or Groundwater Recharge Facilities (지하수 함양시설 또는 LID시설에서의 질산성질소 오염방지를 위한 농업부산물의 탈질효율 실험연구)

  • Lee, Jinwon;Phung, Thanh Huy;Lee, Byungsun;Kim, Kangjoo;Lee, Gyusang
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.82-94
    • /
    • 2021
  • Facilities for low impact development (LID) or groundwater recharge have the high potential spreading groundwater nitrate contamination because of the rapid infiltration. This study was initiated to remove nitrate from the waters using agricultural byproducts as organic sources for denitrification during infiltration. As the first step of this purpose, we experimentally tested the denitrifying efficiency of 4 organic materials (pine tree woodchips, cherry leaves, rice straws, and rice hulls) and tried to identify the key factors controlling the efficiency. For this study, we precisely investigated the change of chemical reactions during the experiment by analyzing various geochemical parameters. The result shows that the denitrification efficiency is not simply linked to the availability of the easily decomposable contents in the organic matter. It is found that avoiding the severe pH decrease due to the CO2 generation is the essence to derive the efficient denitrifying conditions when organic matters were used.

Flyash를 이용한 일일복토재의 포설 사례 연구

  • 박상현;한완수;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.386-389
    • /
    • 2002
  • It may be necessary to apply a daily fever to operate the municipal solid waste landfill. The daily cover helps to control nuisance factors such as the escape of odors, dusts and airborne emissions, and can control the population of disease vectors. Also it may be reduce the infiltration of rain, decreasing the generation of leachate and the potential for surface water and groundwater contamination. Because of its usual availability and traditional usage as the municipal solid waste landfill, soil remains as the most common daily cover material. However, soil tends to reduce the volume of dumping waste c;3pacity in the landfill, it also reduces a period of using in the landfill. Therefore, it is necessary to research about Alternative Daily Cover Materials (ADCMs) because of the limitation of landfill sites. Recently, The types of ADCMs are classified into geosynthetics, forms, spray-ons, indigenous materials. In this study, the authors have tested the spray type of Alternative Daily Cover(ADC) using by flyash, alum with cement. The development. of ADCMs will be highly effective in terms of prolongation using landfill.

  • PDF

Effect of different water levels on the photosynthetic pigments of crops

  • Ryu, Hee-La;Jeong, Eun-Ju;Lee, Won-Hee;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.205-205
    • /
    • 2017
  • An excess soil water condition is one of the major problems for the field crops growing in paddy fields because of their poor drainage and less availability for oxygen uptake which leads to adversely affect the photosynthesis. Therefore, the current study was undertaken with aim to investigate the effects groundwater level on the photosynthetic response of soy bean (Urum), red bean (Arari), sesame (Geonbaek), perilla (Dayu) after the transplanting to the lysimeter to investigate the plant-water relation and their effect on photosynthesis. The chlorophyll content of the crops according to the humid conditions of the soy bean, sesame and the perilla was found to be 5%, 6.89 % and 13.7% higher than that of the groundwater treated at 40cm, respectively. On the other hand, the chlorophyll content of adzuki bean decreased 6.6% from the groundwater level of 40cm, and the sorghum decreased by 5.7%. As a result of investigating the Fv / Fm value of groundwater, the adzuki bean at 20cm above groundwater was lower than that of groundwater by 40cm immediately before flowering. The Fv / Fm value of soy bean and sesame at 40cm above groundwater were lowered by flowering under groundwater 20 cm and Fv / Fm value of sorghum is increased at 40 cm treatment immediately before flowering while the Fv / Fm values of the perilla had no significant difference in comparison to those at 20 cm and 40 cm of groundwater. In the case of chlorophyll fluorescence reaction, it is known that the when the absolute value is closer to 0.82, the stress is considered less. As a result of comparing the numerical values of the crops, it was found that the sorghum was the most stressed followed by adzuki bean and sesame, while the soy beans and perilla was found on the average, as they received less stress.

  • PDF

A Comparative Study for Leaching Characteristics of Specified By-Products due to Changes in Acid Neutralization Capacities (지정부산물의 산중화능력변화에 따른 용출특성 비교연구)

  • 이현경;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.206-209
    • /
    • 2001
  • This study presents the leaching characterization of heavy metals according to changes of pH by ANC test on slag produced in electric arc furnace, bottom ash produced in coal-fired plants and their recycling products. Availability test was performed to assess the fraction of the total concentration that under worst environmental conditions could become available for leaching. TCLP, KLT(Korea Leaching Test) and KLTS(Korea Leaching Test of Soil contamination) were carried out to compare the leaching capacity and to estimate the adequacy of regulatory leaching test. Results from regulatory leaching tests could be misleading because the variable ANC of wastes can lead to very different final leachate pHs. The final pH of the regulatory test is not the ambient pH in the disposal environment, the actual solubilities of contaminants in the field may be entirely different from those predicted by these regulatory tests. Leaching behaviour of by-products was changed by recycling processes, therefore acid neutralization capacity and availability of new products, not leaching concentration by one batch regulatory test, are necessary to determine the method of recycling.

  • PDF