• Title/Summary/Keyword: Auxin receptor

Search Result 4, Processing Time 0.016 seconds

Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

  • Feng, Mingxiao;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.829-835
    • /
    • 2015
  • It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) ($SCF^{TIR1/AFB}$) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional $SCF^{TIR1/AFB}$ auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein

  • Lee, Keunpyo;Kim, Myung-Il;Kwon, Yu-Jihn;Kim, Minkyun;Kim, Yong-Sam;Kim, Donghern
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • Auxin-binding protein 57 ($ABP_{57}$), a soluble auxin-binding protein, acts as a receptor to activate plasma membrane (PM) $H^+-ATPase$. Here, we report the cloning of abp57 and the biochemical characterization of its protein expressed in E. coli. The analysis of internal amino acid sequences of $ABP_{57}$ purified from rice shoots enabled us to search for the corresponding gene in protein DB of NCBI. Further BLAST analysis showed that rice has four abp57-like genes and maize has at least one homolog. Interestingly, Arabidopsis seems to have no homolog. Recombinant $ABP_{57}$ expressed in E. coli caused the activation of PM $H^+-ATPase$ regardless of the existence of IAA. Scatchard analysis showed that the recombinant protein has relatively low affinity to IAA as compared to natural $ABP_{57}$. These results collectively support the notion that the cloned gene is responsible for $ABP_{57}$.

Promotion of Plant Growth by Submergence and the Action Network of Hormones (침수에 의한 식물의 생장 촉진과 호르몬들의 작용 네트워크)

  • Cho Young Jun;Lee Young Na;Park Woong June
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.112-117
    • /
    • 2005
  • Plants living riverside show diverse resistance responses to submergence. The promoted petiole elongation of semi-aquaitc plants, e.g., such as Ranunculus sceleratus and Rumex palustris, is one of the adaptive responses mediated by the plant hormone ethylene. The gaseous hormone is trapped in submerged plant tissues and enhances the petiole growth by increasing sensitivity of the tissues to some plant hormones including auxin. Due to the stimulated growth of petioles, the leaves finally reach the water surface and can respirate again. At the water surface, the accumulated ethylene diffuses out from the tissues to the air. As a result, the increased hormone sensitivity decreases again, and thus the growth rate reduces to the basal level as before. The increased auxin sensitivities by ethylene observed in Ranunculus sceleratus, revealed by the changes in the auxin dose-response curves, indicate the increase of affinities of the receptors to auxin. However, the molecular mechanism of the affinity regulation remains still largely unknown, because the identity of the auxin receptor is still unclear.

Recognition of substrates by membrane potential

  • Yun, Kyu-sik;Tak, Tae-moon;Kim, Jong-ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.31-35
    • /
    • 1998
  • 1. INTRODUCTION : Recognition and binding of organic substrates by biological molecules are of vital importance in biophysics and biophysical chemistry. Most studies of the application focused on the development of biosensors, which detected reaction products generated by the binding between enzymes and substrates. Other types of biosensors in which membrane proteins (e.g., nicotinic acetylcholine receptor, auxin receptor ATPase, maltose bining protein, and glutmate receptor) were utilized as a receptor function were also developed. In the previous study[1], the shifts in membrane potential, caused by the injection of substrates into a permeation cell, were measured using immobilized glucose oxidase membranes. It was suggested that the reaction product was not the origin of the potential shifts, but the changes in the charge density in the membrane due to the binding between the enzyme and the substrates generated the potential shifts. In this study, $\gamma$-globulin was immobilized (entrapped) in a poly($\gamma$-amino acid) network, and the shifts in the membrane potential caused by the injection of some amino acids were investigated.

  • PDF