• Title/Summary/Keyword: Auxiliary spillway

Search Result 4, Processing Time 0.02 seconds

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Design Consideration for Tunnel Spillway related to Hydraulic Characteristics (수리특성을 고려한 수로터널 설계)

  • Yoon, Dong-Duk;Kim, Tae-Hyok;Lee, Jung-Woo;Oh, Myung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.161-168
    • /
    • 2006
  • The recent unpredictable weather condition, especially abnormal heavy precipitation which is on the verge of PMF, made implement more rigorous design standard. Following these trends, the idea of additional auxiliary spillway, most of them are tunnel around existing one, is adopted to many sites. Tunnel spillway, having free water table is generally consisted of several compartments such as inlet, transition, inclined, curved and stilling parts. It may has some technical problems to be considered. Among them, the surface deterioration due to cavitation is reported many times in the part of irregularities on lining. Including this kind of problem, several technical considerations for tunnel spillway will be handled in this paper during design procedure.

  • PDF

A Plan on the Flood Control Ability Improvement Project to maintain stability of existing dams (기존댐 치수능력 증대사업의 시행 방안)

  • Lee, Wan-Ho;Ahn, Hee-Bok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.191-201
    • /
    • 2006
  • The flood control ability improvement project on existing dams is the project for prevention of disasters from excessive flood due to climate changes and thus protects lives and property damages by increasing safety of dams. The collapse of dam brings unimaginable disasters, so the project needs to be swiftly conducted by Government's funding. This paper introduces tile examples of the flood control ability improvement projects of multi-purpose and water supply dams, which is conducted in the way of structural measures among 26 dams operated by Kwater.

  • PDF

A Case Study on the Slope Reinforcement by Improved Steel Pipe Nailing (개량 강관네일링 공법을 이용한 사면 보강사례 연구)

  • Choi, Dong-Nam;Lim, Heui-Dae;Song, Young-Su;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.54-60
    • /
    • 2007
  • This paper describes typical design and construction practice for in-situ ground reinforcement technique using improved steel pipe pressure grouting. A case history is presented to illustrate the benefit gained by application of the technique. This technique was applied to cut slopes developed in the construction of auxiliary spillway of 00 dam. Applicable conditions, method of survey, slope stability analysis and construction are given in this parer. As for the construction method, a procedure is given and the main points are the control of construction work. As a result of the pull-out test, it is shown that seel pipe nailing is particularly useful for stabilizing rock slope.