• Title/Summary/Keyword: Auxiliary inverter

Search Result 178, Processing Time 0.025 seconds

Implementation of a ZVT-PRT Current Controlled Inverters using a Digital Signal Processor (DSP를 이용한 ZVT-PRT 전류제어형 인버터의 구현)

  • 이성룡;전칠환;김상수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.425-429
    • /
    • 2002
  • In this paper, a single-phase inverter using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is presented. The current control algorithm is analyzed about how to design the circuit with auxiliary switch which can ZVT operation for the main power switch. The simulation and experimental results would be shown to verify the proposed current algorithm, because the main power switch is turn on with ZVT and the hi-directional inverter is operated.

  • PDF

An Improved Single-Phase Full-Bridge ZVS Inverter with a Subtractive Coupled Magnetics

  • Soh, Jae-Hwan;Lim, Jong-Yeop;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1835-1841
    • /
    • 2017
  • An improved single-phase full-bridge zero-voltage-switching inverter using a subtractive coupled magnetics is proposed in this paper. The proposed topology overcomes several drawbacks of the conventional ARCPI zero-voltage-switching inverter including two bulky capacitors which can cause problems such as the need for a protection circuit and voltage fluctuation of split capacitors. Also the proposed topology can reduce the number of devices required for ZVS through a simplified auxiliary circuit, thus achieving low cost and small volume and is applicable a modified unipolar PWM scheme. Detail mode analysis and design considerations are provided for optimal efficiency. In the end, the effectiveness and feasibility of the proposed topology are verified experimentally under various conditions.

Grid-Connected Photovoltaic Inverter with Zero-Current-Switching (영전류 스위칭 계통 연계형 태양광 발전 인버터)

  • Choi, Hang-Seok;Kim, J.D.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.953-955
    • /
    • 2001
  • This paper presents a new zero current switching (ZCS) inverter for grid-connected photovoltaic single phase inverter system. The auxiliaey circuit for the soft-switching consists of two resonant inductors and two resonant capacitors as well as two auxiliary switches rated at lower power. The proposed circuit provides zero current switching condition for all the switches, which reduces switching losses significantly. It is controlled to extract maximum power from the solar array and to provide sinusoidal current into the mains. The validity of the proposed system is verified by experimental results from the 1.2kW prototype inverter operating at 40kHz.

  • PDF

A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance (유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구)

  • Kang, Byung-Kwan;Lee, Se-Min;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

Force Commutated Circuit for Driving The Load Commutated Current Source Inverter (부하전류식(負荷轉流式) 전류형(電流型) 인버터를 구동(驅動)하기 위한 강제전류회로(强制轉流回路))

  • Chung, Y.T.;Lee, S.Y.;Soh, Y.C.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.731-735
    • /
    • 1993
  • When induction motor is driven with a load commutated inverter, the output part of the inverter must be capacitive. But, in order to be a good load commutation at the low speed range, very large capacitor or force commutated circuit must be used regarding the capacity of motor. This paper proposed the force commutated circuit for driving the motor in case of the installation of capacitor which can be capable of load commutation at the rating speed. The force commutated circuit is operated by the LC resonant circuit, auxiliary source and SCR, and also composed of the commutation circuit which control the interval of the inverse voltage across the inverter.

  • PDF

Soft-Switching T-Type Multilevel Inverter

  • Chen, Tianyu;Narimani, Mehdi
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1182-1192
    • /
    • 2019
  • In order to improve the conversion efficiency and mitigate the EMI problem of conventional hard-switching inverters, a new soft-switching DC-AC inverter with a compact structure and a low modulation complexity is proposed in this paper. In the proposed structure, resonant inductors are connected in series for the arm branches, and resonant capacitors are connected in parallel for the neutral point branches. With the help of resonant components, the proposed structure achieves zero-current switching on the arm branches and zero-voltage switching on the neutral point branches. When compared with state-of-art soft-switching topologies, the proposed topology does not need auxiliary switches. Moreover, the commutation algorithm to realize soft-switching can be easily implemented. In this paper, the principle of the resonant operation of the proposed soft-switching converter is presented and its performance is verified through simulation studies. The feasibility of the proposed inverter is evaluated experimentally with a 2.4-kW prototype.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.

Development of the Boost Type Auxiliary Coach Converter (객차용 BOOST형 보조전원장치에 관한 연구)

  • 김태완;박건태;정기찬;이성목;김두식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.727-732
    • /
    • 2000
  • This paper is on the development of a auxiliary power supply for the coach of Indian Railways. The auxiliary power supply system supplies the power for air-conditioners, air-compressors, lighting equipments, controllers, etc. It converts the input voltage, DC 110V which is supplied from battery, to AC 3${\Phi}$ 415V of 30kVA capacity. This is a low voltage-high current type converter system and largely consists of boost chopper and 3 phase inverter. Adopting a optimal control algorithm and simple power circuit, we realized the more reliable and competitive system for satisfaction of Indian Railway's strict requirement for vibration, temperature and dust. We completed the design, the manufacture and the field test of the system successfully and proved the system performance and reliability as a result of those tests.

  • PDF

A Development of the High Performance IGBT type Auxiliary Power Supply for Railways. (전동차용 고성능 IGBT형 보조전원장치 개발)

  • 김태완;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.500-506
    • /
    • 1999
  • This paper presents the h밍h performance [GBT type auxiliary jXlWer supply designt.'Cl by new concept. For t the simplification and higher performance, the direct :3 level PWlVl inverter using the high capacity IGBT and t the 32bit DSP are adopted. The cost as well as bulk and weight is appreciably reduced about 40% lower than t those of conventional one. the electrical efficiency above 94~) o and the audible noise level is less than 65dB. In a addition, the TIID(Total lIannonic Distortion) factor is below 5% an이 the voltage fluctuation on a transient s state is below 10%.w 10%.

  • PDF

New Circuit Topology of Single-Ended Soft-Switching PWM High Frequency Inverter and Its Performance Evaluations

  • Deguchi Y.;Moisseev S.;Nakaoka M.;Hirota I.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.247-250
    • /
    • 2001
  • This paper presents a simple and cost effective circuit topology of single-ended type high frequency quasi-resonant PWM inverter using IGBTs, which can operate under wide soft switching operation range based on ZCS for main power switch as compared with a conventional active voltage-clamped ZVS-PWM high frequency quasi-resonant inverter developed previously. In principle, this new circuit topology can efficiently operate under a constant frequency PWM control-based power regulation scheme. In particular, it is noted that the zero current soft switching (ZCS) commutation can achieve for the main active power switch. On the other hand, the zero voltage soft switching (ZVS) commutation can also achieve for the auxiliary active power switch. The operating principle of this high-frequency Inverter treated here and its power regulation characteristics are illustrated on the basis of the simulation and feasible experimental results.

  • PDF