• Title/Summary/Keyword: Auxiliary energy system

Search Result 202, Processing Time 0.026 seconds

The improvement of the efficiency of power plant by the reformation of steam line in the return system (화력발전소에서 응축수 회수계통의 증기배관 개선에 의한 발전시스템의 효율 향상)

  • Kwon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.867-871
    • /
    • 2001
  • The main reason for reviewing the condensate water return system in the auxiliary steam system is to obtain the thermal high efficiency of the power plant and thus save the fossil energy in power plant. This study intends to analyze the thermal efficiency of the power plant and predict the increasing in the generator output by the return system reformation of auxiliary steam line in the thermal power plant.

  • PDF

Design & Performance of the Solar Energy Research & Test Center (태양에너지 연구 시험센타 설계 및 효율에 관한 연구)

  • Auh, Paul Chung-Moo;Lee, Jong-Ho;Choi, Byung-Owan;Cho, Yil-Sik
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF

SEPARATE AND INTEGRAL EFFECT TESTS FOR VALIDATION OF COOLING AND OPERATIONAL PERFORMANCE OF THE APR+ PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Kang, Kyoung-Ho;Kim, Seok;Bae, Byoung-Uhn;Cho, Yun-Je;Park, Yu-Sun;Yun, Byoung-Jo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.597-610
    • /
    • 2012
  • The passive auxiliary feedwater system (PAFS) is one of the advanced safety features adopted in the APR+, which is intended to completely replace the conventional active auxiliary feedwater system. With an aim of validating the cooling and operational performance of PAFS, an experimental program is in progress at KAERI, which is composed of two kinds of tests; the separate effect test and the integral effect test. The separate effect test, PASCAL ($\underline{P}$AF$\underline{S}$ $\underline{C}$ondensing Heat Removal $\underline{A}$ssessment $\underline{L}$oop), is being performed to experimentally investigate the condensation heat transfer and natural convection phenomena in PAFS. A single, nearly-horizontal U-tube, whose dimensions are the same as the prototypic U-tube of the APR+ PAFS, is simulated in the PASCAL test. The PASCAL experimental result showed that the present design of PAFS satisfied the heat removal requirement for cooling down the reactor core during the anticipated accident transients. The integral effect test is in progress to confirm the operational performance of PAFS, coupled with the reactor coolant systems using the ATLAS facility. As the first integral effect test, an FLB (feedwater line break) accident was simulated for the APR+. From the integral effect test result, it could be concluded that the APR+ has the capability of coping with the hypothetical FLB accident by adopting PAFS and proper set-points of its operation.

Study on the Performance of a Cascade Heat Pump with Two-stage Water Heating Process (2단 승온 캐스케이드 히트펌프의 성능 특성에 관한 연구)

  • Jang, Hanbyeoul;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.27-32
    • /
    • 2016
  • It is estimated that only heating and cooling take about one third of the total energy consumption worldwide. However, the conventional heating and cooling systems have low efficiencies. Also, boilers and electric heaters that are mostly used to generate both domestic and industrial hot water are inefficient and high energy consumers. For this reason, cascade heat pumps which are known to be very energy efficient and have less environmental impact are being promoted to replace conventional heating, cooling and hot water systems. In this study, a newly designed cascade heat pump by two-stage water heating method has been experimentally investigated. By adopting the auxiliary heat exchanger, the performance of the system was increased. The performance enhancement rate of the system could be maximized by adjusting the low stage compressor speed rather than the high stage compressor speed. The performance of the system with the auxiliary heat exchanger was enhanced by 16.5%.

A Study on Utility Inter-Active for Urban Photovoltaic/Wind Hybrid Generation System (도시보급용 소형 태양광/풍력 복합발전의 계통연계운전에 관한 연구)

  • Ji Woon-Seok;Yoon Pil-Hyun;Cho Kyeng-Jai;Lee Jeong-il;Lim Jung-Yeol;Cha In-Su
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1504-1506
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF

Optimal Routes Analysis of Vehicles for Auxiliary Operations in Open-pit Mines using a Heuristic Algorithm for the Traveling Salesman Problem (휴리스틱 외판원 문제 알고리즘을 이용한 노천광산 보조 작업 차량의 최적 이동경로 분석)

  • Park, Boyoung;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This study analyzed the optimal routes of auxiliary vehicles in an open-pit mine that need to traverse the entire mine through many working points. Unlike previous studies which usually used the Dijkstra's algorithm, this study utilized a heuristic algorithm for the Traveling Salesman Problem(TSP). Thus, the optimal routes of auxiliary vehicles could be determined by considering the visiting order of multiple working points. A case study at the Pasir open-pit coal mine, Indonesia was conducted to analyze the travel route of an auxiliary vehicle that monitors the working condition by traversing the entire mine without stopping. As a result, we could know that the heuristic TSP algorithm is more efficient than intuitive judgment in determining the optimal travel route; 20 minutes can be shortened when the auxiliary vehicle traverses the entire mine through 25 working points according to the route determined by the heuristic TSP algorithm. It is expected that the results of this study can be utilized as a basis to set the direction of future research for the system optimization of auxiliary vehicles in open-pit mines.

A Comparative Study on the Auxiliary Fan Pressure and the Ventilation Efficiency in Large-opening Limestone Mine Airways (대단면 석회석 광산 갱도 내 국부선풍기 승압력 및 통기효과 비교 연구)

  • Park, Dongjun;Kang, Hyeonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Most of the local limestone mines are developed as large-opening underground mines, while mine ventilation is heavily dependent on the natural ventilation and auxiliary systems, rather than the mechanical ventilation system using main fans. The current auxiliary ventilation system with fan and ducting requires optimization since enhanced deployment of diesel equipment demands higher airflow rate and the associated cost is expected to be too excessive for the local mine operators. This paper aims at optimizing the fan capacity for the working site ventilation through comparing the fan pressure in the mine airway and the ventilation efficiency of an axial-flow fan and a propeller fan developed in this study.

The Auxiliary Power Compensation apparatus for small scale Photovoltaic/Wind Hybrid Generation System (중소형 태양광/풍력 복합발전시스템의 보조 전력보상장치에 관한 연구)

  • Park Se-Jun;Yoon Jeong-Phil;Yoon Hyung-Sang;Lim Jung-Yeol;Kang Byung-Bog;Lee Jeong-Il;Cha In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.109-112
    • /
    • 2004
  • Photovoltaic energy and wind energy are very in constant depending on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the solar and the wind generation system have many problems(energy conversion, energy storage, load control etc.) comparing with a conventional power plant. So, in order to solve these existing problems, hybrid generation system of photovoltaic(500W) and wind power(400W), which combines wind power energy and solar energy to have effect of supporting each other, was suggested. But hybrid generation system cannot always generate stable output with weather condition, the auxiliary power compensation apparatus that uses elastic energy of spiral spring to hybrid generation system was also added for the present study. And it may confirm that power was continuously provided to load by storing energy obtained from generating rotary energy of spiral spring generates in small scale generator.

  • PDF

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.