• Title/Summary/Keyword: Auxiliary converter

Search Result 383, Processing Time 0.028 seconds

A Study on the Three-Level Converter using Primary Auxiliary Circuit (1차측 보조회로를 이용한 Three-Level 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Cho, Kyu-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.972-981
    • /
    • 2008
  • A New ZVS(Zero Voltage Switching) and ZVZCS(Zero Voltage and Zero Current Switching) Three-Level Converter is proposed. The proposed converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the all switch. A primary auxiliary circuit, which consists of one coupled inductor, is added in the primary to provide ZVZCS conditions to primary switches. Many advantages including simple circuit topology high efficiency, and low cost make this converter attractive for high power applications. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW(27V, 74A) 40 kHz IGBT based experimental circuit.

A Study on ZVT Boost Converter Using a ZCS Auxiliary Circuit (ZCS 보조회로를 이용한 ZVT Boost 컨버터에 관한 연구)

  • Ryu D.K.;Lee W.S.;Choi T.Y.;Seo M.S.;Won C,Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • Recently, a ZVT boost converter is embedded in a power factor correction system. The control circuit of the converter assures soft-switching for all the MOSFETs and load regulation. The PFC system contains additional control circuits which assure the input voltage in a sinusoidal form and feed-forward line voltage regulation. In this paper, a soft switching boost converter with zero-voltage transition(ZVT) main switch using zero-current switching(ZCS) auxiliary switch is proposed. Operating intervals of the converter are persented and analyzed. The proposed results show that the main switch maintains UT while auxiliary switch retains ZCS for the complete specified line and load conditions.

  • PDF

A New High Efficiency Interleaved Buck Converter with Soft-switching Scheme (소프트 스위칭 방식을 적용한 고효율 인터리브드 벅 컨버터)

  • Kim, Nak-Yoon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • In this paper, a soft-switching scheme for the PWM interleaved buck converter(IBC) is newly proposed to obtain the advantages of both the conventional PWM interleaved buck and resonant converters such as ease of control, reduced switching losses and stresses, and low EMI. To obtain the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional interleaved buck converter and used to achieve soft-switching for both the main switches and the output diodes while not incurring any additional losses due to the auxiliary circuit itself. In this paper, the basic operations are discussed and design guidelines are presented. And through the experimental results, the usefulness of the proposed converter is verified.

A Study on PWM Converter of Auxiliary Power Block for Next Generation High Speed Train (차세대 고속전철용 보조전원장치용 PWM 컨버터에 대한 연구)

  • Jeong, Jeong-Han;Cha, Gil-Ro;Lee, Won-Cheol;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.245-248
    • /
    • 2008
  • This paper gives a description of the mode'ling and control of a single phase PWM(Pulse Width Modulation) converter for HEMU-400X(High-speed Electric Multiple Unit - 400 km/h experiment). The converter is part of a Auxiliary power unit supplied by the 25[kV], 60[Hz] overhead line. A model of the converter in a synchronously rotating reference frame of coordinates is used to develop a new type of control. The control system has separate controllers for the active and reactive current, permitting the free choice of the power factor. This paper proposes a new control method of PWM converter for Auxiliary power unit.

  • PDF

Design of the High Efficiency Bidirectional Converter for DC Distributed Power System (직류 배전 시스템을 위한 고효율 양방향 컨버터의 설계)

  • Tran, Duc-Hung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.5-6
    • /
    • 2016
  • This paper introduces a high efficiency bidirectional resonant converter using an additional LC auxiliary circuit for dcdistribution applications. The LC auxiliary circuit operates as a variable inductor and the additional LC circuit helps to increase the effective magnetizing inductance, thereby reducing the turn-off and primary circulating current. A 5 kW bidirectional converter for dc-distribution system is implemented to verify the validity of the proposed method. The experimental results show the high efficiency characteristics of the proposed converter over the wide range of load in both direction of power flow. The maximum efficiency of the proposed system was 98.1 % at 3 kW.

  • PDF

Input Voltage Range Extension Method for Half-Bridge LLC Converters by Using Magamp Auxiliary Post-Regulator

  • Jin, Xiaoguang;Lin, Huipin;Xu, Jun;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.34-43
    • /
    • 2019
  • An improved half-bridge LLC converter with a magamp auxiliary post-regulator is proposed in this paper. The function of the magamp is bypassed when the converter works within the low input-voltage range. Meanwhile, it operates as an auxiliary post-regulator when the input voltage is high. By changing the blocking time of the magamp, the dc gain of the converter can be extended. Hence, the input voltage range of the converter is extended. The realization of proposed topology does not require a complicated circuit. The controller of the magamp can be easily implemented using only passive components, transistors and an OP amp. The generalized operational principle is analyzed and the design criterion for the magamp is presented. Finally, a 25V output, 400W experimental prototype was built and tested for a 160-300V input-voltage range to verify the feasibility of the proposed method.

Soft-Switching Auxiliary Current Control for Improving Load Transient Response of Buck Converter

  • Kim, Doogwook;Shin, Joonho;Shin, Jong-Won
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.160-162
    • /
    • 2020
  • A control technique for the auxiliary buck/boost converter is proposed herein to improve the load transient response of the buck converter. The proposed technique improves the system efficiency by enabling the soft switching operation of the auxiliary converter. The design guidelines for achieving capacitor charge balance for the output capacitor during the transient are also presented herein. The experimental results revealed that the output voltage undershoot and settling time during the load step-up transient were 40 mV and 14 ㎲, respectively, and the output voltage overshoot and settling time during the load step-down transient were 35 mV and 21 ㎲, respectively. The performance and effectiveness of the proposed technique were experimentally verified using a prototype buck converter with a 15-V input, 3.3-V output, and 200-kHz switching frequency.

  • PDF

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

A Study on Parallel Operation of PWM Converter for Auxiliary bloc High Speed Train (고속전철 보조전원장치용 PWM 컨버터의 병렬운전에 관한 연구)

  • 송상훈;성재원;김연충;원충연;최종묵;기상우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.358-361
    • /
    • 1999
  • In auxiliary block of high speed train power factor correction and harmonics reduction is very important issue for efficient energy transport. The GTO-equipped PWM converter is used for traction untill resently. But the rising power capability of IGBTs resently allows to build IGBT-equipped PWM converter with a considerably increased switching frequency. This paper presents switching pattern, control method, operation mode and tuned filter to reduce dc link voltage ripple for paralleled converter.

  • PDF