• Title/Summary/Keyword: Auxiliary brake

Search Result 17, Processing Time 0.017 seconds

Research for Recharging Braking Power Circuit of Electric Regenerative Auxiliary Brake for Hybrid Commercial Vehicles (하이브리드 상용차용 전기식 회생 보조 브레이크의 전력회수회로에 대한 연구)

  • Kim, Yoon-jae;Yoo, Chang-hee;Kwon, Sun-man;Lee, Jun-young
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.191-192
    • /
    • 2016
  • 본 논문은 전기식 회생 보조 브레이크의 넓은 범위의 입력전압을 가진 전기에너지를 받아서 넓은 범위의 출력전압을 가진 리튬이온 배터리에 충전할 수 있도록 Buck-boost 토폴로지를 제안하고, 배터리와의 절연을 위해 출력 효율이 좋은 LLC 토폴로지를 제안한다. 제안된 2단 구성 회로의 유효성은 실험을 통해 검증되었다.

  • PDF

A Study on a Robot for Moving a Double-parked Car (이중 주차된 차량을 이동하기 위한 로봇에 관한 연구)

  • Kim, Min-Chan;Sung, Young Whee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.233-244
    • /
    • 2020
  • A double-parked car is the one that is parked in a crowded parking lot with its transmission gear in neutral position and its auxiliary brake released. A double-parked car can be moved by pushing it but doing so is very difficult and dangerous. In a previous study, we proposed an omni-directional mobile robot for moving a double parked car. In that study we adopted Mecanum wheels. Even though the proposed robot showed successful results, it has some drawbacks such as dependency on a load condition, complexity in control, inefficiency in power use, etc. To overcome those drawbacks, we propose a differential drive robot with ordinary two tire wheels. The proposed robot consists of two parts, one is a wheel part and the other is a body part. By selectively connecting or disconnecting those two parts with the aid of an electric brake, the proposed robot is able to have omni-directional mobility.

A Study on Electromagnetic Retarder's Power Recovery System and Regenerating Voltage Control (전자기형 리타더의 전력회수장치 및 회생전압제어에 대한 연구)

  • Jung, Sung-Chul;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1207-1214
    • /
    • 2017
  • In the case of frequent braking, when driving downhill or long distance, conventional brakes using friction are problematic in braking safety due to brake rupture and fading phenomenon. Therefore auxiliary brakes is essential for heavy vehicles. And several research has been actively conducted to improve energy efficiency by regenerating mechanical energy into electric energy when the vehicles brake. In this paper, a voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, a resonant L-C circuit is configured in the retarder. The retarder can be modeled as self-excited induction generator due to its operating principle. The driving conditions according to the retarder's parameters are made into 3-D maps. Also, the voltage of the resonant circuit changing depending on the driving pulse applied to the FET was analyzed. For the control of this voltage, we proposed an algorithm using the PI controller. The controlled voltage is converted by a 3-phase AC/DC converter and then charged to a battery inside the heavy vehicles through a DC/DC converter. Electromagnetic retarder and its controller are validated using Matlab Simulink. We also demonstrate the voltage controller through the actual M-G set experiment.

Kinetic Energy Recovery System for Electric Vehicles (전기자동차용 기계적 에너지 회생장치)

  • Shin, Eung-Soo;Bang, Jae-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.440-445
    • /
    • 2011
  • This paper presents a new regenerative brake system of electric vehicles that employs a continuous variable transmission(CVT) and a flywheel. The developed device has advantages over existing regenerative brakes from a standpoint of reliability and versatility in actual driving conditions. The system consists of a CVT, two wheels, a flywheel, a coupling and auxiliary powertrain components. The CVT is designed as a combination of two cones and a roller, which causes the velocity difference between the wheel and the flywheel. The power flow of the flywheel system is controlled by the CVT roller and the coupling through step motors. A prototype has been developed and then its performance has been investigated for various operating conditions. Results show that the storage efficiency of the flywheel is much affected by the vehicle's velocity and it is reduced below 20% for high speed, as compared to the 25% efficiency for an ideal condition. The CVT is a primary factor for lowering the flywheel efficiencies due to large friction and slipping between the cone and the roller.

Numerical Analysis Study on the Fluid Flow Characteristics of Hydraulic Retarder for Heavy Vehicles (대형 차량용 유압식 리타더의 유동 특성에 관한 수치해석적 연구)

  • Park, In-Sung;Jang, Hyun;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • This study examined the fluid flow characteristics of a hydraulic retarder adapted as an auxiliary brake for heavy vehicles. The commercial computational fluid dynamics (CFD) software STAR-CCM+ was used to investigate the torque performance and flow characteristics of the hydraulic retarder. The numerical results showed that the pressure distribution was higher near the inner wall surface of the rotor and stator. The pressure of the working fluid increased in the radial direction of the rotor and stator. The variation in the fluid velocity intensity showed a similar trend to that of the fluid pressure, but the maximum velocity appeared near the outer wall surface of the rotor and stator interface. The numerical results showed that increasing the revolution speed of the retarder greatly increased the rate of torque generation.

A Study on a Standard Strategy of EMU Control and Monitoring System for Improved Maintenance Efficiency (유지보수 효율향상을 위한 전동차 제어 및 감시시스템 표준화 방안 연구)

  • Lee, Woo-Dong;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.241-245
    • /
    • 2013
  • In the case of the existing train control system, the driver monitors the condition of the vehicle through a composite controller device that displays various information on a screen in the vehicle. However, when problems arise such as car trouble, it is difficult for the drivers to take action immediately. In addition, maintenance personnel have to manually save data one by one after storing the vehicle to analyze control information of the main devices such as the brake controller and auxiliary power. To improve these points, a system that sends and receives all information in real time should be established by installing a sensor communication network and a surveillance system. This study attempts to improve the safety and maintenance of rail vehicles by suggesting a standardized method for train control and surveillance system.

Surface Treatment of Backplate for Part 25 Aircraft Metal Brake Pads (Part 25급 항공기용 금속계 제동패드 백플레이트의 표면처리)

  • Hohyeong Kim;Min-ji Kim;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.544-551
    • /
    • 2024
  • In this study, the electrochemical polarization data required for the simulation of the plating process, simulation of plating conditions, and characterization of the plating layer were discussed. The electrochemical polarization data obtained by potentiodynamic polarization tests and potentiostat analysis of Ni and Cu were used to observe changes in the overvoltage distribution with the flow conditions of the plating solution. In the simulation of plating conditions, the current density distribution and plating thickness distribution were evaluated under different variables to analyze the influence of the location and number of contacts on the rack pins on the plating quality. Simulation results under variables such as anode geometry, interpole distance, auxiliary anode placement, and variation of substrate spacing were used to explore ways to improve plating thickness deviation. Additionally, plating layer characterization analyzed the thickness, adhesion, and delamination of the plating layer with and without buffer layer formation. The simulation results can be utilized as important basic data for improving the efficiency and quality of the plating process.