• Title/Summary/Keyword: Auxiliary Power

Search Result 970, Processing Time 0.033 seconds

A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions

  • Ryoo, Hee Jae;Lee, Chan Woo;Han, Jong Won;Kim, Wook;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.312-322
    • /
    • 2020
  • As the use of mobile devices increase, there is public interest in the utilization of the human motion generated mechanical energy. The human motion generated mechanical energies vary depending on the body region, type of motion, etc., and an appropriate device has to be designed to utilize them effectively. In this work, a device based on the principles of triboelectric generation and inertia was assessed in order to utilize the multi-axial mechanical energies generated by human motions. To improve the output performance we confirm the changes in the output that vary with the structural design, the reasons for such changes, and variations in performance based on the parts of the human body. In addition, the level of electrical energy generated based on motion type was measured; a maximum voltage of 30 V and a current of 2 ㎂ were generated. Finally, the proposed device was utilized in LEDs used for lighting, thus demonstrating that multi-axial mechanical energies can be harvested effectively. Based on the results, we expect that the developed device can be utilized as a sensor to detect mechanical energies, to sense changes in motion, or as a generator for auxiliary power supply for mobile devices.

A Study on a Robot for Moving a Double-parked Car (이중 주차된 차량을 이동하기 위한 로봇에 관한 연구)

  • Kim, Min-Chan;Sung, Young Whee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.233-244
    • /
    • 2020
  • A double-parked car is the one that is parked in a crowded parking lot with its transmission gear in neutral position and its auxiliary brake released. A double-parked car can be moved by pushing it but doing so is very difficult and dangerous. In a previous study, we proposed an omni-directional mobile robot for moving a double parked car. In that study we adopted Mecanum wheels. Even though the proposed robot showed successful results, it has some drawbacks such as dependency on a load condition, complexity in control, inefficiency in power use, etc. To overcome those drawbacks, we propose a differential drive robot with ordinary two tire wheels. The proposed robot consists of two parts, one is a wheel part and the other is a body part. By selectively connecting or disconnecting those two parts with the aid of an electric brake, the proposed robot is able to have omni-directional mobility.

A Study on Electromagnetic Retarder's Power Recovery System and Regenerating Voltage Control (전자기형 리타더의 전력회수장치 및 회생전압제어에 대한 연구)

  • Jung, Sung-Chul;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1207-1214
    • /
    • 2017
  • In the case of frequent braking, when driving downhill or long distance, conventional brakes using friction are problematic in braking safety due to brake rupture and fading phenomenon. Therefore auxiliary brakes is essential for heavy vehicles. And several research has been actively conducted to improve energy efficiency by regenerating mechanical energy into electric energy when the vehicles brake. In this paper, a voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, a resonant L-C circuit is configured in the retarder. The retarder can be modeled as self-excited induction generator due to its operating principle. The driving conditions according to the retarder's parameters are made into 3-D maps. Also, the voltage of the resonant circuit changing depending on the driving pulse applied to the FET was analyzed. For the control of this voltage, we proposed an algorithm using the PI controller. The controlled voltage is converted by a 3-phase AC/DC converter and then charged to a battery inside the heavy vehicles through a DC/DC converter. Electromagnetic retarder and its controller are validated using Matlab Simulink. We also demonstrate the voltage controller through the actual M-G set experiment.

Effects of vertical ribs protruding from facades on the wind loads of super high-rise buildings

  • Quan, Yong;Hou, Fangchao;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.145-169
    • /
    • 2017
  • The auxiliary structures of a high-rise building, such as balconies, ribs, and grids, are usually much smaller than the whole building; therefore, it is difficult to simulate them on a scaled model during wind tunnel tests, and they are often ignored. However, they may have notable effects on the local or overall wind loads of the building. In the present study, a series of wind pressure wind tunnel tests and high-frequency force balance (HFFB) wind tunnel tests were conducted on rigid models of an actual super high-rise building with vertical ribs protruding from its facades. The effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and the most unfavorable values of the local wind pressure coefficients were investigated by analyzing the distribution of wind pressure coefficients on the facades and the variations of the wind pressure coefficients at the cross section at 2/3 of the building height versus wind direction angle. In addition, the effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and power spectra of the overall aerodynamic force coefficients were studied by analyzing the aerodynamic base moment coefficients. The results show that vertical ribs significantly decrease the most unfavorable suction coefficients in the corner recession regions and edge regions of facades and increase the mean and fluctuating along-wind overall aerodynamic forces.

Numerical Study of Diesel Atomization Device for Fuel Activation (연료 활성화를 위한 디젤 미립화 장치의 수치해석 연구)

  • Choi, Sang In;Feng, Jia Ping;Seo, Ho Seok;Kim, Sang Bum;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.306-318
    • /
    • 2017
  • Heavy diesel vehicles are one of major sources of urban fine dust in Korea and other developing countries. In this study, an auxiliary device assisting fuel atomization, which is called FAD (Fuel Activation Device), was closely reviewed through numerical simulation. As calculated, the diesel flow velocity passing across FAD increased up to 1.68 times, and it enhanced the cavitation effect which could improve the injected fuel atomization. Super cavitation phenomenon, which is the most important effect on nozzle injection, has occurred until the cavitation number (${\sigma}$) decreased from 1.15 to 1.09, and atomized droplets via a nozzle of which opening was $500{\mu}m$ distributed less than $200{\mu}m$ in sauter mean diameter (SMD).

New Family of Zero-Current-Switching (ZCS) PWM Converters (새로운 영전류 스위칭 PWM 컨버터)

  • Choi, Hang-Seok;Moon, S.J.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.946-949
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype boost converter operating at 40kHz.

  • PDF

A Cathode Ripple Resolution Method on 600W SHF TWTA for Satellite Communications (위성통신용 600W급 SHF대역 진행파관 증폭기 캐소드 리플 특성 개선방안)

  • Hong, In-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.48-57
    • /
    • 2006
  • TWTA is to perform the function that amplifies the input RF signal and outputs it to the antenna. This paper proposes a method that is to improve the cathode ripple or the SHF TWTA for satellite communications. Through the embodiment and experiment of 600W SHF TWTA, this method satisfies the design specifications. Also, RF performance is improved by reducing the noise of auxiliary power sources supplied to the RF part and eliminating the unexpected noise. Therefore, this method is very effective and can be used to develop the similar equipments.

A Study on the Thrust Characteristic Analysis of Linear Induction Motor according to Secondary Reaction Plate Using the Container Scanner Vehicle (컨테이너 검색기 이송대차 추진용 선형 유도전동기의 2차측 리액션플레이트 재질에 따른 특성 연구)

  • Jeong, Jae-Hoon;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won;Lim, Jaewon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • This paper presents the analysis of the analysis of thrust characteristics of linear induction motors(LIMs) according to secondary reaction plate. LIMs are well known as high speed transport systems, which can obtain thrust directly without gears and links, or auxiliary mechanisms. A simple structure, easy maintenance, and less environmental pollution are advantages of LIMs. In transport systems using LIMs, the secondary reaction plate is an important design factor, because it has considerable impact on the cost of the railway as well as the performance of the LIMs. This paper deals analyzed the characteristics of linear induction motor used for moving the vehicle of container scanner. Thrust, efficiency and load characteristic were interpreted with FEM regarding two models whose material of secondary reaction plate was copper and aluminum. It suggested the interpretation of thrust, efficiency and power factor characteristic along slip and compared the operation ability of linear induction motor through characteristics analysis along the load.

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

Development of Main Steam Line Break Mass and Energy Release Analysis with RETRAN-3D Code

  • Park, Young-Chan;Kim, Yoo
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • An estimation methodology of the mass and energy (M/E) release due to the main steam line break (MSLB) has been developed with the RETRAN-3D code. In the case of equipment qualification (EQ), the over-estimated temperature would exceed the design limits of some cables or valves. In order to have a more flexible EQ profiles from the MSLB M/E release, the methodology with the best-estimated code was used. The major conditions affecting the MSLB M/E were found to be the initial SG level, heat transfer between primary and secondary sides, power level, operable protection system, main or auxiliary feedwater availability, and break conditions. The RETRAN-3D models were developed for the Kori unit 1 (KRN-1) which is typical two loop Westinghouse (WH) designed plant. Particularly, a detailed model of the steam generators was developed to estimate a more realistic two-phase heat transfer effect of the steam flow. After the modeling, the methodology has been developed through the sensitivity analyses. The M/E release data generated from the analyses have been used as the input to the inside containment pressure and temperature (P/T) analysis. According to the results at the point of view containment P/T, the Kori unit 1 can have more margin of 5∼15 ㎪ in pressure and 8∼15$^{\circ}C$ in temperature.