• Title/Summary/Keyword: Autotransformer-Fed Railway System

Search Result 3, Processing Time 0.023 seconds

Power Quality Analysis of Autotransformer-fed Railway System Considering Installation Position of Shunt Active Power Filter (병렬 능동전력필터 위치에 따른 전기철도 AT급전 시스템의 전기품질 비교)

  • Han, Jung-Ho;Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.60-69
    • /
    • 2011
  • This paper presents a power quality compensation of the autotransformer-fed railway system using Matlab/SimPowerSystem and especially investigates two installation methods of the shunt active power filter (SAPF) along the autotransformer-fed railway systems; one configuration describes the SAPF installed at the substation and the other is the SAPF at the sectioning post. Also, the novel SAPF control algorithms based on the synchronous reference frame are proposed. A comparative study on two SAPF configurations and the corresponding control algorithms is investigated comprehensively through the case study.

Analysis for Autotransformer-Fed AC Electric Railroad System Using Constant Current Mode (정전류 철도 부하를 이용한 교류 전기 철도 급전 시스템 해석)

  • 이승혁;정현수;김진오
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.329-334
    • /
    • 2001
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode. The theory is based on the solution of algebraic. The proposed modeling is considered the line self-impedances and mutual-impedances. Besides, the load modeling improved results are obtained as application to the proposed constant current mode. In the analysis on AT-fed AC electric railroad system circuit, a generalized analysis method using the loop equation on a case by case. the simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The model contains assumptions regarding the representation of the autotransformer, the impedance of the track/catenary system, and the grounding arrangements, which all effect the accuracy of the result. The modeling results seem very reasonable. It is established that techniques for the AC electric railroad system modeling and analysis.

  • PDF

Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis (회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가)

  • 오광해;차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF