• Title/Summary/Keyword: Autotransformer rectifier

Search Result 7, Processing Time 0.021 seconds

Effect of Winding Configuration on the kVA Rating of Wye-connected Autotransformer Applied to 12- pulse Rectifier

  • Meng, Fangang;Du, Qingxiao;Gao, Lei;Li, Quanhui;Man, Zhongcheng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.463-474
    • /
    • 2019
  • This paper presents the effect of winding configuration on the kVA rating of a wye-connected autotransformer applied to a 12-pulse rectifier. To describe the winding configuration of the wye-connected autotransformer, position and proportional parameters are defined and their quantitative relation is calculated. The voltages across and currents through the windings are measured under different winding connections. Consequently, a relation between the kVA rating and position parameter is established in accordance with the analysis, and the optimal winding configuration is obtained on the basis of this relation. A wye-connected autotransformer with the least equivalent kVA rating and simplest winding configuration is designed and applied to the 12-pulse rectifier. Simulations and experiments are conducted to validate the theoretical analysis.

Step-up and Step-down Asymmetrical 24-Pulse Autotransformer Rectifier

  • Zhang, Lu;Ge, Hong-juan;Jiang, Fan;Yang, Guang;Lin, Yi
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1536-1544
    • /
    • 2018
  • The existing 24-pulse autotransformer rectifier unit (ATRU) needs interphase reactors for parallel work of the rectifier bridges, and its output voltage cannot be regulated. Aiming at these problems, a step-up and step-down asymmetrical 24-pulse ATRU is proposed in this paper. The connections and turns ratios among transformer windings are well designed. In addition, a 15-degree phase difference is formed between two of the 24 voltage vectors produced by the transformer, which makes the four rectifier bridge groups produce a 24-pulse DC voltage without interphase reactors. Meanwhile, by adding extended winding to each phase of the transformer, wide-range regulation of the ATRU output voltage can be realized, and the reasonable voltage regulation range is between 0.2 and 1.6. The superposition of the voltage vectors and the principle of the voltage regulation are analyzed in detail. Furthermore, the turns ratio of the windings, winding current, output voltage, and kilovolt-ampere rating are all derived. Finally, the simulations and experiments are carried out, and the correctness of the principle and theoretical analysis of the new 24-pulse ATRU are verified.

An Input Current Waveshaping AC-DC Converter for Rectifier Loads

  • Singh, Bhim;Garg, Vipin;Bhuvaneswari, G.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This paper presents the design and analysis of a new input AC current wave shaping AC-DC converter for cost effective harmonic mitigation under varying loads. The proposed converter consists of a delta-polygon connected autotransformer based twelve-pulse AC-DC converter and a small rating passive shunt filter tuned at $11^{th}$ harmonic frequency. The proposed AC-DC converter eliminates the most dominant $5^{th},\;7^{th}$ and $11^{th}$ harmonics and reduces higher order harmonics; thereby, resulting in an improved power quality at AC mains. Moreover, the design of the autotransformer is modified to make it suitable for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. To validate the proposed approach, various power quality indices are presented under varying loads. Experimental results obtained on the developed converter are given to validate the model and design of the proposed converter.

Two Low-Loss Large Current Rectifiers Based on Low KVA Rating Wye-Connected Autotransformers

  • Meng, Fangang;Man, Zhongcheng;Li, Quanhui;Gao, Lei
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1697-1707
    • /
    • 2018
  • In this paper, two large current rectifiers are proposed based on two wye-connected autotransformers. The requirements of the ideal large current rectifier are analyzed, and it is concluded that the large current rectifier has a higher power density and a higher energy conversion efficiency when it is made up of two three-phase half-wave rectifiers and a wye-connected autotransformer. According to theoretical analysis results, the two novel wye-connected autotransformers are designed to feed two three-phase half-wave rectifiers. The two autotransformers can generate two groups of three-phase voltages with a 60o phase shifting, and their kVA ratings account for 95% and 80% of the load power, respectively. These values are less than those of a double star rectifier at 30% and 46%. From the input mains and output side, the power quality of the proposed rectifiers is the same as that of the double star rectifier. Some experiments validate the correctness of the theoretical analysis.

Reduced Rating T-Connected Autotransformer Based Thirty-Pulse AC-DC Converter for Vector Controlled Induction Motor Drives

  • Singh Bhim;Bhuvaneswari G.;Garg Vipin
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.214-225
    • /
    • 2006
  • The design and performance analysis of a reduced rating autotransformer based thirty-pulse AC-DC converter is carried out for feeding a vector controlled induction motor drive (VCIMD). The configuration of the proposed autotransformer consists of only two single phase transformers, with their windings connected in a T-shape, resulting in simplicity in design, manufacturing and in a reduction in magnetics rating. The design procedure of the autotransformer along with the newly designed interphase transformer is presented. The proposed configuration has flexibility in varying the transformer output voltage ratios as required. The design of the autotransformer can be modified for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. The proposed thirty-pulse AC-DC converter is capable of suppressing less than $29^{th}$ harmonics in the supply current. The power factor is also improved to near unity in the wide operating range of the drive. A comparison of different power quality indices at AC mains and DC bus is demonstrated in a conventional 6-pulse AC-DC converter and the proposed AC-DC converter feeding a VCIMD. A laboratory prototype of the proposed autotransformer based 30-pulse AC-DC converter was developed with test results validating the proposed design and system.

A New High Power Factor Correction Diode Rectifier System (새로운 능동형 고역률 다이오드 정류기시스템)

  • 김현정;최세완;원충연;김규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • Thin paper proposes a new three-phase rectifier that actively shapes the input current sinusoidal by means of two rectifier bridges, each followed by a dc-dc boost converter. The proposed approach draws sinusoidal input current at unity power factor and has output voltage regulation capability The size and weight of magnetic material Is reduced by Incorporating a low KVA three-phase autotransformer and by directly connecting the dc outputs each other without using low frequency interphase transformer(IPT). The operation principle is described along with simple control method, and experimental results on a 1.5KW prototype are provided.

A Multipulse-Voltage Source Rectifier System with a Three-Phase Diode Circuit in order to improve the Input Current Waveforms (입력 전류 파형 개선을 위한 다펄스 3상 다이오드 전압원 정류 시스템)

  • Im, Seong-Goun;Park, Hyun-Chul;Lee, Seong-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.853-855
    • /
    • 1993
  • In this paper, a further improved system obtaining very low distorted waveforms of input ac currents of three phase rectifier circuit is proposed. The proposed system consists of an uncomplicated 24 pulse diode bridge rectifier that is transformerless, by adding only switching circuit which consists of two switchs to conventional system. Also to optimum the effectiveness or the harmonic reduction, the optimum turn ratio of an autotransformer and the optimum switching control angle are decided by computer simulation. And then, the voltage waveform obtained has a total harmonic distortion of 8.1%, and the predominant harmonics 23th and 25th. This paper describes operation principle, analysis of the waveforms of input voltage and current. The theoretial results are verified through simulation.

  • PDF