• 제목/요약/키워드: Autoregressive error(ARE) model

검색결과 106건 처리시간 0.029초

How to improve oil consumption forecast using google trends from online big data?: the structured regularization methods for large vector autoregressive model

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.

충청남도 서산시 기온의 통계적 모형 연구 (Analysis of statistical models on temperature at the Seosan city in Korea)

  • 이훈자
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1293-1300
    • /
    • 2014
  • 기온의 변화는 국가 정책에 여러 가지 영향을 준다. 본 연구에서는 충청남도 서산시 2003년 ~ 2012년 기온을 주위에서 쉽게 구할 수 있는 기상자료, 온실가스자료, 대기자료를 이용하여 자기회귀오차 (autoregressive error)모형으로 월별과 계절별로 분석하였다. 기온을 위한 기상자료로는, 풍속, 강수량, 일사량, 운량, 습도를 사용했고, 온실가스자료는 이산화탄소 ($CO_2$), 메탄 ($CH_4$), 아산화질소 ($N_2O$), 염화불화탄소 ($CFC_{11}$), 대기자료는 미세먼지 ($PM_{10}$), 이산화황 ($SO_2$), 이산화질소 ($NO_2$), 오존 ($O_3$), 일산화탄소 (CO)를 사용하였다. 분석 결과, 자기회귀오차모형으로 월별 기온을 39%-63% 정도 설명할 수 있다.

정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구 (A comparison study on regression with stationary nonparametric autoregressive errors)

  • 유규상
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.157-169
    • /
    • 2016
  • 이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.

순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정 (IDENTIFICATION OF MODAL PARAMETERS BY SEQUENTIAL PREDICTION ERROR METHOD)

  • Lee, Chang-Guen;Yun, Chung-Bang
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.79-84
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the autoregressive and moving average model with auxiliary stochastic input (ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then, the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story building model subject to ground exitations.

  • PDF

경기도 안양시 오존농도의 시계열모형 연구 (Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea)

  • 이훈자
    • 한국대기환경학회지
    • /
    • 제24권5호
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Analysis of Time Series Models for Ozone Concentrations at the Uijeongbu City in Korea

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1153-1164
    • /
    • 2008
  • The ozone data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model have been considered for analyzing the ozone data at the northern part of the Gyeonggi-Do, Uijeongbu monitoring site in Korea. The result showed that both overall and monthly ARE models are suited for describing the ozone concentration. In the ARE model, seven meteorological variables and four pollution variables are used as the as the explanatory variables for the ozone data set. The seven meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, dew point temperature, steam pressure, and amount of cloud. The four air pollution explanatory variables are Sulfur dioxide(SO2), Nitrogen dioxide(NO2), Cobalt(CO), and Promethium 10(PM10). Also, the high level ozone data (over 80ppb) have been analyzed four ARE models, General ARE, HL ARE, PM10 add ARE, Temperature add ARE model. The result shows that the General ARE, HL ARE, and PM10 add ARE models are suited for describing the high level of ozone data.

  • PDF

시계열 해석을 이용한 팔운동 근전신호의 기능분리 (Functional Separation of Myoelectric Signal of Human Arm Movements Using Time Series Analysis)

  • 홍성우;남문현
    • 대한전기학회논문지
    • /
    • 제41권9호
    • /
    • pp.1051-1059
    • /
    • 1992
  • In this paper, two general methods using time-series analysis in the functional separation of the myoelectric signal of human arm movements are developed. Autocorrelation, covariance method and sequential least squares algorithm were used to determine the model parameters and the order of signal model to describe six arm movement patterns` the forearm flexion and extension, the wrist pronation and supination, rotation-in and rotation-out. The confidence interval to classify the functions of arm movement was defined by the mean and standard deviation of total squared error. With the error signals of autoregressive(AR) model, the result showed that the highest success rate was obtained in the case of 4th order, and success rate was decreased with increase of order. Autocorrelation was the method of choice for better success rate. This technique might be applied to biomedical and rehabilitation engineering.

  • PDF

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

PERFORMANCE OF THE AUTOREGRESSIVE METHOD IN LONG-TERM PREDICTION OF SUNSPOT NUMBER

  • Chae, Jongchul;Kim, Yeon Han
    • 천문학회지
    • /
    • 제50권2호
    • /
    • pp.21-27
    • /
    • 2017
  • The autoregressive method provides a univariate procedure to predict the future sunspot number (SSN) based on past record. The strength of this method lies in the possibility that from past data it yields the SSN in the future as a function of time. On the other hand, its major limitation comes from the intrinsic complexity of solar magnetic activity that may deviate from the linear stationary process assumption that is the basis of the autoregressive model. By analyzing the residual errors produced by the method, we have obtained the following conclusions: (1) the optimal duration of the past time for the forecast is found to be 8.5 years; (2) the standard error increases with prediction horizon and the errors are mostly systematic ones resulting from the incompleteness of the autoregressive model; (3) there is a tendency that the predicted value is underestimated in the activity rising phase, while it is overestimated in the declining phase; (5) the model prediction of a new Solar Cycle is fairly good when it is similar to the previous one, but is bad when the new cycle is much different from the previous one; (6) a reasonably good prediction of a new cycle can be made using the AR model 1.5 years after the start of the cycle. In addition, we predict the next cycle (Solar Cycle 25) will reach the peak in 2024 at the activity level similar to the current cycle.

경기도 수원시 미세먼지 농도의 시계열모형 연구 (Analysis of time series models for PM10 concentrations at the Suwon city in Korea)

  • 이훈자
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1117-1124
    • /
    • 2010
  • 미세먼지 농도는 국가의 중요한 환경 척도 중의 하나이다. 본 연구에서는 경기도 남부에 위치한 수원시 2003년-2009년 미세먼지 농도를 주위에서 쉽게 구할 수 있는 대기자료와 기상자료를 이용하여 자기회귀오차모형으로 월별로 분석하였다. 미세먼지 농도 분석을 위한 대기자료는 이산화황, 이산화질소, 일산화탄소, 오존 등을 사용했고, 기상자료로는 일 최고온도, 풍속, 상대습도, 강수량, 일사량, 운량을 사용하였다. 분석 결과, 자기회귀오차모형으로 월별 미세먼지 농도를 13%-49% 정도 설명할 수 있다.