• Title/Summary/Keyword: Autopilot System

Search Result 144, Processing Time 0.02 seconds

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Design of Auto Race-Track and Figure-8 Flight Mode for UAV (무인기의 자동 장주비행 및 8자 비행모드 설계)

  • Lee, Sangjong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.851-857
    • /
    • 2014
  • This paper addresses the design of the auto race-track and figure-8 flight mode which can be applied to expand the loitering flight mode and increase the safety of UAV. To implement these flight modes, necessary waypoints and entry points can be calculated automatically from several information of the ground control system. The flight logic is proposed to pass the desired waypoints as well as entry points and transfer to the desired flight path by combining the light-of-sight and loitering guidance controller. The proposed algorithm and logic is verified using the 6-DOF UAV model and nonlinear simulation under the several flight conditions.

Detecting and Avoiding Dangerous Area for UAVs Using Public Big Data (공공 빅데이터를 이용한 UAV 위험구역검출 및 회피방법)

  • Park, Kyung Seok;Kim, Min Jun;Kim, Sung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2019
  • Because of a moving UAV has a lot of potential/kinetic energy, if the UAV falls to the ground, it may have a lot of impact. Because this can lead to human casualities, in this paper, the population density area on the UAV flight path is defined as a dangerous area. The conventional UAV path flight was a passive form in which a UAV moved in accordance with a path preset by a user before the flight. Some UAVs include safety features such as a obstacle avoidance system during flight. Still, it is difficult to respond to changes in the real-time flight environment. Using public Big Data for UAV path flight can improve response to real-time flight environment changes by enabling detection of dangerous areas and avoidance of the areas. Therefore, in this paper, we propose a method to detect and avoid dangerous areas for UAVs by utilizing the Big Data collected in real-time. If the routh is designated according to the destination by the proposed method, the dangerous area is determined in real-time and the flight is made to the optimal bypass path. In further research, we will study ways to increase the quality satisfaction of the images acquired by flying under the avoidance flight plan.

A Relative Importance Evaluation of Bridge Navigational Equipment Using AHP (AHP를 이용한 선교항해장비의 상대적 중요도 평가)

  • Kwon, So-Hyun;Jeong, Woo-Lee;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • According to IMO, MASS is defined as a vessel operated at various levels independent of human interference. The safety navigation support service for MASS is designed to improve the safety and efficiency of MASS by developing public services on shore for ship arrivals/departures and for cargo handling. The safety navigation support service consists of a total of six types of services: autonomous operation, berthing/unberthing/mooring, cargo handling and ship arrival/departure service, PSC inspection, condition monitoring, and accident response support services. In order to support accident response service, the relative importance of a bridge navigational equipment was assessed by stratifying the navigation system to provide safe and efficient support services by objective judgment through specific and quantitative methods using AHP, one of decision-making methods used by an expert group. The survey was conducted by dividing the bridge navigational equipment into depth, location, and speed information. As a result of applying the AHP method, the importance of depth, location, and speed information was assessed. The relative importance of each equipment for providing location information was also assessed in order of Radar, DGPS, ECDIS, Gyro compass, Autopilot, and AIS. This was similar to survey results on the utilization of each operator's preference and its impact on marine accidents.