• Title/Summary/Keyword: Autonomous steering

Search Result 184, Processing Time 0.025 seconds

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.

Design of Steering Controller for Autonomous Vehicle System on Magnetic Based Using Neural Network (신경망을 이용한 자계기반 자율주행 시스템의 조향 제어기 설계)

  • Lim Dae-Young;Jung Young-Yoon;Ryoo Young-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.185-188
    • /
    • 2005
  • 본 논문에서 신경망을 이용한 자계기반 자율주행 시스템의 조향 제어기 설계를 제안한다. 자율주행시스템에서 가장 중요한 핵심요소는 자계토로상의 센서의 현재위치를 파악하고 주행하는 것이다. 먼저 자계도로상의 현재위치를 파악하기 위한 방법으로, 첫 번째 자기쌍극자 모델식이 센서에서 측정된 자계와 일치함을 보였다. 두 번째 Peak Mapping법을 이용하여 외란으로 작용하는 지자계 성분을 제거할 수 있음을 입증하였다. 세 번째로 신경망을 이용하여 높이성분($B_{z}$)가 변하더라도 정확한 거리가 계측됨을 확인하였다. 따라서 신경망을 이용하면 소량의 메모리를 사용할 수 있으므로 실제 시스템에서 경제적인 효과를 볼 수 있고, 정확한 거리를 계측하므로 경로를 이탈하지 않고 자율주행이 가능한 시스템을 설계하였다.

  • PDF

Studies of Lateral Impedance Force Control for an Autonomous Mobile Robot with Slip (자율 주행 이동 로봇의 슬립을 고려한 횡방향 임피던스 힘제어에 대한 연구)

  • Hsia T. C.;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.161-167
    • /
    • 2006
  • In this paper, lateral force control of a mobile robot with slip is presented. First, the bicycle model of a mobile robot is derived for the front steering. Second, impedance force control algorithm is applied to regulate contact force with environment. The desired distance is specified conservatively inside the environment to guarantee to make contact. Different stiffness of environment has been tested for force tracking task. Simulation results show that the proposed control algorithm works well to maintain desired contact force on the environment.

A Study on Obstacles Avoidance for Mobile Robot Using Ultrasonic Sensor Array (초음파 어레이를 이용한 이동 로봇의 장애물 회피에 관한 연구)

  • 김병남;지용근;권오상;이응혁
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1113-1116
    • /
    • 1999
  • For mobile robot, the navigation effectiveness can be improved by providing autonomy, but this autonomy requires the mobile robot to detect unknown obstacles and avoid collisions while moving it toward the target. This paper presents an effective method for autonomous navigation of the mobile robot in structured environments. This method uses ultrasonic sensor array to detect obstacles and utilizes force relationship between the obstacles and the target for avoiding collisions. Accuracy of sensory data produced by ultrasonic sensors is improved by employing error eliminating rapid ultrasonic firing (EERUF) technique. Navigation algorithm controlling both the velocity and steering simultaneously is developed, implemented to the mobile robot and tested on the floor filled with the cluttered obstacles. It is verified that from the results of the field tests the mobile robot can move at a maximum speed of 0.66 m/sec without any collisions.

  • PDF

A Study on Way-Point Tracking of AUV using State Feedback (상태 궤환을 사용한 AUV의 경우점 추적 연구)

  • Kwon, Soon-Tae;Baek, Woon-Kyung;Kang, In-Pil;Choi, Hyeung-Sik;Joo, Moon-G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1266-1272
    • /
    • 2011
  • For way-point tracking of an autonomous underwater vehicle, a state feedback controller was designed by using pole placement scheme in discrete time domain. In the controller, 4 state variables were used for regulating the depth of the vehicle in z direction, and 3 state variables, for steering the vehicle in xy plane. Assuming constant speed of AUV, we simplified the design of the way-point tracking system. The proposed controller was simulated by MATLAB/Simulink using 6 degree-of-freedom nonlinear model and its performance of way point tracking was shown to be fulfilled within 1 m, nevertheless the proposed controller is quite simple and easy to implement compared to sliding mode controller.

Fuzzy Control of a Mobile Robot with Camera

  • Cho, Jung-Tae;Lee, Seok-Won;Nam, Boo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.381-381
    • /
    • 2000
  • This paper describes the path planning method in an unknown environment for an autonomous mobile robot equipped with CCD(Charge-Coupled Device) camera. The mobile robot moves along the guideline. The CCD camera is useful to detect the existence of a guideline. The wavelet transform is used to find the edge of guideline. Using wavelet transform, we can make an image processing more easily and rapidly. We make a fuzzy control rule using image data then make a decision the position and the navigation of the mobile robot. The center value that indicates the center of guideline is the input of fuzzy logic controller and the steering angle of the mobile robot is the fuzzy output. Some actual experiments for the mobile robot applied fuzzy control show that the mobile robot effectively moves to target position.

  • PDF

A Study of Line Recognition and Driving Direction Control On Vision based AGV (Vision을 이용한 자율주행 로봇의 라인 인식 및 주행방향 결정에 관한 연구)

  • Kim, Young-Suk;Kim, Tae-Wan;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2341-2343
    • /
    • 2002
  • This paper describes a vision-based line recognition and control of driving direction for an AGV(autonomous guided vehicle). As navigation guide, black stripe attached on the corridor is used. Binary image of guide stripe captured by a CCD camera is used. For detect the guideline quickly and extractly, we use for variable thresholding algorithm. this low-cost line-tracking system is efficiently using pc-based real time vision processing. steering control is studied through controller with guide-line angle error. This method is tested via a typical agv with a single camera in laboratory environment.

  • PDF

Fuzzy Navigation Control of Mobile Robot equipped with CCD Camera (퍼지제어를 이용한 카메라가 장착된 이동로봇의 경로제어)

  • Cho, Jung-Tae;Lee, Seok-Won;Nam, Boo-Hee
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.195-200
    • /
    • 2000
  • This paper describes the path planning method in an unknown environment for an autonomous mobile robot equipped with CCD(Charge-Coupled Device) camera. The mobile robot moves along the guideline. The CCD camera is used for the detection of the existence of a guideline. The wavelet transform is used to find the edge of guideline. It is possible for us to do image processing more easily and rapidly by using wavelet transform. We make a fuzzy control rule using image data as an input then determined the position and the navigation of the mobile robot. The center value of guideline is the input of fuzzy logic controller and the steering angle of the mobile robot is the fuzzy controller output. Some actual experiments show that the mobile robot effectively moves to target position by means of the applied fuzzy control.

  • PDF

A Study on the Simulation Modeling Method of LKAS Test Evalution (LKAS 시험평가의 시뮬레이션 모델링 기법에 관한 연구)

  • Bae, Geon-Hwan;Lee, Seon-bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2020
  • The leading technologies of the ADAS (Advanced Driver Assist System) are ACC (Advanced Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). LKAS is a system that uses cameras and infrared sensors to control steering and return to its running lane in the event of unintentional deviations. The actual test is performed for a safety evaluation and verification of the system. On the other hand, research on the system evaluation method is insufficient when an additional steering angle is applied. In this study, a model using Prescan was developed and simulated for the scenarios proposed in the preceding study. Comparative analyses of the simulation and the actual test were performed. As a result, the modeling validity was verified. A difference between the front wheels and the lane occurred due to the return velocity. The results revealed a maximum error of 0.56 m. The error occurred because the lateral velocity of the car was relatively small. On the other hand, the distance from wheels to the lanes displayed a tendency of approximately 0.5 m. This can be verified reliably.

Design and Prototype Development of An Agent for Self-Driving Car (자율운행 자동차의 에이전트 설계 및 프로토타입 개발)

  • Lim, Seung Kyu;Lee, Jae Moon
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.131-142
    • /
    • 2015
  • A self-driving car is an autonomous vehicle capable of fulfilling the main transportation capabilities of a traditional car. It must be capable of sensing its environment and navigating without human input. In this paper, we design the agent that can simulate these self-driving cars and develop a prototype for it. To do this, we analyze the requirements for the self-driving car, and then the agent is designed to be suitable for traditional multi-agent system. The key point of the design is that agents move along the steering forces only. The prototype of the designed agent was implemented by using Unity 3D. From simulation results using the prototype, movements of the agents were very realistic. However, in the case of increasing the number of the agent the performance was seriously degraded, and so the alternatives of the problem were suggested.