• Title/Summary/Keyword: Autonomous driving software

Search Result 85, Processing Time 0.023 seconds

Calibration of VLP-16 Lidar Sensor and Vision Cameras Using the Center Coordinates of a Spherical Object (구형물체의 중심좌표를 이용한 VLP-16 라이다 센서와 비전 카메라 사이의 보정)

  • Lee, Ju-Hwan;Lee, Geun-Mo;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • 360 degree 3-dimensional lidar sensors and vision cameras are commonly used in the development of autonomous driving techniques for automobile, drone, etc. By the way, existing calibration techniques for obtaining th e external transformation of the lidar and the camera sensors have disadvantages in that special calibration objects are used or the object size is too large. In this paper, we introduce a simple calibration method between two sensors using a spherical object. We calculated the sphere center coordinates using four 3-D points selected by RANSAC of the range data of the sphere. The 2-dimensional coordinates of the object center in the camera image are also detected to calibrate the two sensors. Even when the range data is acquired from various angles, the image of the spherical object always maintains a circular shape. The proposed method results in about 2 pixel reprojection error, and the performance of the proposed technique is analyzed by comparing with the existing methods.

A Study on the PBL-based AI Education for Computational Thinking (컴퓨팅 사고력 향상을 위한 문제 중심학습 기반 인공지능 교육 방안)

  • Choi, Min-Seong;Choi, Bong-Jun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.110-115
    • /
    • 2021
  • With the era of the 4th Industrial Revolution, education on artificial intelligence is one of the important topics. However, since existing education is aimed at knowledge, it is not suitable for developing the active problem-solving ability and AI utilization ability required by artificial intelligence education. To solve this problem, we proposes PBL-based education method in which learners learn in the process of solving the presented problem. The problem presented to the learner is a completed project. This project consists of three types: a classification model, the training data of the classification model, and the block code to be executed according to the classified result. The project works, but each component is designed to perform a low level of operation. In order to solve this problem, the learners can expect to improve their computational thinking skills by finding problems in the project through testing, finding solutions through discussion, and improving to a higher level of operation.

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

Development of Artificial Intelligence Instructional Program using Python and Robots (파이썬과 로봇을 활용한 인공지능(AI) 교육 프로그램 개발)

  • Yoo, Inhwan;Jeon, Jaecheon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.369-376
    • /
    • 2021
  • With the development of artificial intelligence (AI) technology, discussions on the use of artificial intelligence are actively taking place in many fields, and various policies for nurturing artificial intelligence talents are being promoted in the field of education. In this study, we propose a robot programming framework using artificial intelligence technology, and based on this, we use Python, which is used frequently in the machine learning field, and an educational robot that is highly utilized in the field of education to provide artificial intelligence. (AI) education program was proposed. The level of autonomous driving (levels 0-5) suggested by the International Society of Automotive Engineers (SAE) is simplified to four levels, and based on this, the camera attached to the robot recognizes and detects lines (objects). The goal was to make a line detector that can move by itself. The developed program is not a standardized form of solving a given problem by simply using a specific programming language, but has the experience of defining complex and unstructured problems in life autonomously and solving them based on artificial intelligence (AI) technology. It is meaningful.

  • PDF

The Strategic Positioning of Platform Providers and Automotive Manufacturers in the Forthcoming Smart-car Market (스마트카 산업에서 플랫폼사업자와 완성차업체의 전략적 포지셔닝 분석)

  • Hyun, Jae Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.274-280
    • /
    • 2017
  • The smart-car industry has emerged as the important variable that will decide the future industrial contour of the automotive industry, together with commercialization of electronic vehicles, connected cars, infotainment, telematics, and the autonomous/self-driving car. This study analyzes the strategic position of platform companies and car manufacturers that would determine the future of the smart-car market. The findings of this study show that despite the entry barriers in industrial factors, such as economies of scale, the industrial infrastructure, and global production networks, and technical factors like exclusive head-sector information, car manufacturers may be deprived of their industrial leadership by platform companies with map and user data, big data capabilities, and user interface experience if they lag behind ICT innovation. This insight is based on the emerging importance of software and platforms, and the simplification of car structures, proven by the successful commercialization of electronic vehicles. This study complements existing studies mainly focused on technical aspects of the smart-car industry by examining the strategic dimensions of platform companies and their approach to the future smart-car market by comparing them with existing car manufacturing multinationals.