• Title/Summary/Keyword: Autonomous car

Search Result 195, Processing Time 0.022 seconds

The Design of the Obstacle Avoidances System for Unmanned Vehicle Using a Depth Camera (깊이 카메라를 이용한 무인이동체의 장애물 회피 시스템 설계)

  • Kim, Min-Joon;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.224-226
    • /
    • 2016
  • With the technical development and rapid increase of private demand, the new market for unmanned vehicle combined with the characteristics of 'unmanned automation' and 'vehicle' is rapidly growing. Even though the pilot driving is currently allowed in some countries, there is no country that has institutionalized the formal driving of self-driving cars. In case of the existing vehicles, safety incidents are frequently happening due to the frequent malfunction of the rear sensor, blind spot of the rear camera, or drivers' carelessness. Once such minor flaws are complemented, the relevant regulations for the commercialization of self-driving car and small drone could be relieved. Contrary to the ultrasonic and laser sensors used for the existing vehicles, this paper aims to attempt the distance measurement by using the depth sensor. A depth camera calculates the distance data based on the TOF method calculating the time difference by lighting laser or infrared light onto an object or area and then receiving the beam coming back. As this camera can obtain the depth data in the pixel unit of CCD camera, it can be used for collecting depth data in real-time. This paper suggests to solve problems mentioned above by using depth data in real-time and also to design the obstacle avoidance system through distance measurement.

  • PDF

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

A Study on Artificial Intelligence Ethics Perceptions of University Students by Text Mining (텍스트 마이닝으로 살펴본 대학생들의 인공지능 윤리 인식 연구)

  • Yoo, Sujin;Jang, YunJae
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.947-960
    • /
    • 2021
  • In this study, we examine the AI ethics perception of university students to explore the direction of AI ethics education. For this, 83 students wrote their thoughts about 5 discussion topics on online bulletin board. We analyzed it using language networks, one of the text mining techniques. As a result, 62.5% of students spoke the future of the AI society positively. Second, if there is a self-driving car accident, 39.2% of students thought it is the vehicle owner's responsibility at the current level of autonomous driving. Third, invasion of privacy, abuse of technology, and unbalanced information acquisition were cited as dysfunctions of the development of AI. It was mentioned that ethical education for both AI users and developers is required as a way to minimize malfunctions, and institutional preparations should be carried out in parallel. Fourth, only 19.2% of students showed a positive opinion about a society where face recognition technology is universal. Finally, there was a common opinion that when collecting data including personal information, only the part with the consent should be used. Regarding the use of AI without moral standards, they emphasized the ethical literacy of both users and developers. This study is meaningful in that it provides information necessary to design the contents of artificial intelligence ethics education in liberal arts education.

Attention based Feature-Fusion Network for 3D Object Detection (3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크)

  • Sang-Hyun Ryoo;Dae-Yeol Kang;Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.190-196
    • /
    • 2023
  • Recently, following the development of LIDAR technology which can detect distance from the object, the interest for LIDAR based 3D object detection network is getting higher. Previous networks generate inaccurate localization results due to spatial information loss during voxelization and downsampling. In this study, we propose an attention-based convergence method and a camera-LIDAR convergence system to acquire high-level features and high positional accuracy. First, by introducing the attention method into the Voxel-RCNN structure, which is a grid-based 3D object detection network, the multi-scale sparse 3D convolution feature is effectively fused to improve the performance of 3D object detection. Additionally, we propose the late-fusion mechanism for fusing outcomes in 3D object detection network and 2D object detection network to delete false positive. Comparative experiments with existing algorithms are performed using the KITTI data set, which is widely used in the field of autonomous driving. The proposed method showed performance improvement in both 2D object detection on BEV and 3D object detection. In particular, the precision was improved by about 0.54% for the car moderate class compared to Voxel-RCNN.

High Definition Road Map Object usability Verification for High Definition Road Map improvement (정밀도로지도 개선을 위한 정밀도로지도 객체 활용성 검증)

  • Oh, Jong Min;Song, Yong Hyun;Hong, Song Pyo;Shin, Young Min;Ko, Young Chin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2020
  • As the 4th Industrial Revolution era in worldwide, interest in autonomous vehicles is increasing. but due to recent safety issues such as pedestrian accidents and car accidents, as a technical model for this, the demand for 3D HD maps (High Definition maps) is increasing in including lanes, road markings, road information, traffic lights and traffic signs etc. However, since some complementary points have been continuously raised according to demand, It is necessary to collect the opinions of institutions and companies utilizing HD maps and to improve HD maps. This study was conducted by utilizing the results of the contest for usability verification of HD Maps hosted by the National Geographic Information Institute and organized by the Spatial Information Industry Promotion Institute. For this study, we researched HD maps' layers and codes for HD maps object usability to improve HD maps, constructed HD maps object usability items accordingly, and contested usability verification of HD maps according to the items The contestants conducted verification and analyzed the results. As a result, the most frequently used code for each layer was the flat intersection, and the code showing the highest usage rate was a safety sign. In addition, the use rate of the sub-section and height obstacles was 16.67% and 8.88%, respectively, showing a low ratio. In order to utilize HD maps in the future, this study is expected to require research to continuously collect opinions from customers and improve data objects and data models that are actually needed by customers.