• Title/Summary/Keyword: Autonomous Underwater Vehicle

Search Result 216, Processing Time 0.025 seconds

Formation Control of a Group of Underactuated Autonomous Underwater Vehicles (작동기수가 부족한 자율무인잠수정 그룹의 편대제어기법)

  • Li, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1197-1204
    • /
    • 2008
  • This paper presents an asymptotic formation control scheme for a group of underactuated autonomous underwater vehicles (AUVs) where only three control inputs - surge force, yaw moment and pitch moment are available for each vehicle's six degree of freedom (DOF) underwater motion. Usually, the dynamics agents applied in most of the formation algorithms presented so far have been modeled as particle systems, which is a simple double-integrator system. Therefore, these algorithms cannot be directly applicable to the practical systems, especially to the underwater vehicles whose dynamics are highly nonlinear. Moreover, the vehicles considered in this paper are underactuated. The formation control is derived using general potential function method, and the corresponding potential function consists of two parts: interactions between vehicles and virtual-leader following. Proposed formation scheme guarantees asymptotic local stability of closed-loop system. Numerical simulations are carried out to illustrate the effectiveness of proposed formation scheme.

A Study on the Development of Underwater Robot Control System for Autonomous Grasping (자율 파지를 위한 수중 로봇 제어 시스템 구축에 관한 연구)

  • Lee, Yoongeon;Lee, Yeongjun;Chae, Junbo;Choi, Hyun-Taek;Yeu, Taekyeong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • This paper presents a control and operation system for a remotely operated vehicle (ROV). The ROV used in the study was equipped with a manipulator and is being developed for underwater exploration and autonomous underwater working. Precision position and attitude control ability is essential for underwater operation using a manipulator. For propulsion, the ROV is equipped with eight thrusters, the number of those are more than six degrees-of-freedom. Four of them are in charge of surge, sway, and yaw motion, and the other four are responsible for heave, roll, and pitch motion. Therefore, it is more efficient to integrate the management of the thrusters rather than control them individually. In this paper, a thrust allocation method for thruster management is presented, and the design of a feedback controller using sensor data is described. The software for the ROV operation consists of a robot operating system that can efficiently process data between multiple hardware platforms. Through experimental analysis, the validity of the control system performance was verified.

An Implementation of Modulation/ Demodulation System Based on the Multipath Analyses for the Acoustic-based Communication (Multipath를 고려한 수중 초음파 통신시스템의 구현)

  • 임용곤;박종원;김천석;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. For the test of autonomous underwater vehicle(AUV), underwater acoustic channel with multipath structure is introduced to mathmatical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of mulipath's effect is presented as a mathmatical equation, and the equation or SMR is simulated by MATLAB program.

  • PDF

Research on High-resolution Seafloor Topography Generation using Feature Extraction Algorithm Based on Deep Learning (딥러닝 기반의 특징점 추출 알고리즘을 활용한 고해상도 해저지형 생성기법 연구)

  • Hyun Seung Kim;Jae Deok Jang;Chul Hyun;Sung Kyun Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, we propose a technique to model high resolution seafloor topography with 1m intervals using actual water depth data near the east coast of the Korea with 1.6km distance intervals. Using a feature point extraction algorithm that harris corner based on deep learning, the location of the center of seafloor mountain was calculated and the surrounding topology was modeled. The modeled high-resolution seafloor topography based on deep learning was verified within 1.1m mean error between the actual warder dept data. And average error that result of calculating based on deep learning was reduced by 54.4% compared to the case that deep learning was not applied. The proposed algorithm is expected to generate high resolution underwater topology for the entire Korean peninsula and be used to establish a path plan for autonomous navigation of underwater vehicle.

Underwater Navigation of AUVs Using Uncorrelated Measurement Error Model of USBL

  • Lee, Pan-Mook;Park, Jin-Yeong;Baek, Hyuk;Kim, Sea-Moon;Jun, Bong-Huan;Kim, Ho-Sung;Lee, Phil-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.340-352
    • /
    • 2022
  • This article presents a modeling method for the uncorrelated measurement error of the ultra-short baseline (USBL) acoustic positioning system for aiding navigation of underwater vehicles. The Mahalanobis distance (MD) and principal component analysis are applied to decorrelate the errors of USBL measurements, which are correlated in the x- and y-directions and vary according to the relative direction and distance between a reference station and the underwater vehicles. The proposed method can decouple the radial-direction error and angular direction error from each USBL measurement, where the former and latter are independent and dependent, respectively, of the distance between the reference station and the vehicle. With the decorrelation of the USBL errors along the trajectory of the vehicles in every time step, the proposed method can reduce the threshold of the outlier decision level. To demonstrate the effectiveness of the proposed method, simulation studies were performed with motion data obtained from a field experiment involving an autonomous underwater vehicle and USBL signals generated numerically by matching the specifications of a specific USBL with the data of a global positioning system. The simulations indicated that the navigation system is more robust in rejecting outliers of the USBL measurements than conventional ones. In addition, it was shown that the erroneous estimation of the navigation system after a long USBL blackout can converge to the true states using the MD of the USBL measurements. The navigation systems using the uncorrelated error model of the USBL, therefore, can effectively eliminate USBL outliers without loss of uncontaminated signals.

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

An In-situ Correction Method of Position Error for an Autonomous Underwater Vehicle Surveying the Sea Floor

  • Lee, Pan-Mook;Jun, Bong-Huan;Park, Jin-Yeong;Shim, Hyung-Won;Kim, Jae-Soo;Jung, Hun-Sang;Yoon, Ji-Young
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.60-67
    • /
    • 2011
  • This paper presents an in-situ correction method to compensate for the position error of an autonomous underwater vehicle (AUV) near the sea floor. AUVs generally have an inertial navigation system assisted with auxiliary navigational sensors. Since the inertial navigation system shows drift in position without the bottom reflection of a Doppler velocity log, external acoustic positioning systems, such as an ultra short baseline (USBL), are needed to set the position without surfacing the AUV. The main concept of the correction method is as follows: when the AUV arrives near the sea floor, the vehicle moves around horizontally in a circular mode, while the USBL transceiver installed on a surface vessel measures the AUV's position. After acquiring one data set, a least-square curve fitting method is adopted to find the center of the AUV's circular motion, which is transferred to the AUV via an acoustic telemetry modem (ATM). The proposed method is robust for the outlier of USBL, and it is independent of the time delay for the data transfer of the USBL position with the ATM. The proposed method also reduces the intrinsic position error of the USBL, and is applicable to the in-situ calibration as well as the initialization of the AUVs' position. Monte Carlo simulation was conducted to verify the effectiveness of the method.

Design of Path Tracking Controller for Underactuated Autonomous Underwater Vehicle Using Approach Angle Concept (접근 각도 개념을 이용한 과소 작동기 무인 잠수정의 경로 추적 제어기 설계)

  • Kim, Kyoung-Joo;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2012
  • In this paper, we propose a method for designing the path tracking controller using an approach angle concept for an underactuated autonomous underwater vehicle (AUV). The AUV is controlled by the surge speed and yaw rate: there is no side thruster. To solve this underactuated AUV problem in the path tracking, we introduce an approach angle concept which makes the AUV converge to the reference path. And we design the path tracking controller using the proposed approach angle. To design the path tracking controller, we obtain the new vehicle's error dynamics in the body-fixed frame, and then design the path tracking controller based on Lypunov direct method. Finally, some simulation results demonstrate the effectiveness of the proposed controller.

A Development for the Acoustic Underwater Image Transmission System in VORAM Ship (VORAM호의 초음파 수중영상 전송시스템 개발)

  • 임용곤;박종원;강준선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.351-358
    • /
    • 1998
  • This paper deals with the underwater image transmission system which includes in AUV(Autonomous Underwater Vehicle) Project(that is VORAM(Vehicle for Ocean Research And Monitoring)), developed by KIMM for survey and investigation of a sea-bed through transmitting the underwater image to the mother ship. The system presented in this paper consists of a transducer which has a 136KHz center frequency and it's 10KHz bandwidth, pre-amplifier, $\pi$/4 QPSK(Quadreature Phase Shift Keying) modulation/demodulation method, image compressing method using JPEG technique and modified Stop & protocol. The experimental results of the system is verified to a high performance with 9600 bps for transmitting the underwater image through the basin test. The results of test are also verified which allows to desirable transmission performance compared with the existing developed system and the possibility to put the practical use of survey and investigation. And, the viterbi coding and adaptive equalizer for cancelling the multipath effect are developing for more effective image transmission system. Also, these technique will very effectively adapt to realtime image transmission system.

  • PDF

Design and Analysis of UHF-GPS Antenna for Autonomous Underwater Vehicles (자율무인잠수정용 UHF-GPS 안테나 설계 및 해석)

  • Sang-Jin Park;Yeong-Jun Jo;Dong-Hyun Seo;Lin-Keun Park
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.464-473
    • /
    • 2022
  • In this paper, about a lightweight design that satisfies the performance of UHF-GPS Antenna used in autonomous underwater vehicle is proposed. Structural analysis, watertight external pressure test and non-destructive testing used in the design process are decided in consideration of structural safety for operating external forces in the underwater environment. First, the material of radome is selected for the performance of the UHF-GPS Antenna for communication with the carrier on the underwater operation in consideration of the 20 bar pressure generated. And the material of radome as PA-GF is selected by conducting electromagnetic field analysis and structural analysis and by considering high strength, rigidity and high dielectric constant. Electromagnetic field analysis and structural analysis by the thickness of radome are additionally performed in order to satisfy the required weight of UHF-GPS antenna. After selecting the final model, its structural safety is verified through watertight external pressure test and non-destructive testing.