• Title/Summary/Keyword: Autonomous Underwater Vehicle

Search Result 218, Processing Time 0.023 seconds

Comparison of Fuzzy Implication Operators by means of a Local Path-Planning of AUVs (자율수중운동체의 상세경로설정기법을 위한 퍼지조건연산자의 비교)

  • 이영일;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.140-143
    • /
    • 2002
  • 본 논문에서는 자율수중운동체(AUV, Autonomous Underwater Vehicle)의 실시간 충돌회피에 적용되는 휴리스틱 탐색기법에 적합한 퍼지조건연산자와 알파절단(aleph-cut)의 선택에 관해 논한다. 퍼지조건연산자와 알파절단은 두 퍼지관계에서 새로운 퍼지관계를 생성시키는 퍼지삼각논리곱의 연산에 적용되는데 이것은 휴리스틱탐색기법의 이론적 기반이 된다. 본 논문은 평가함수를 이용한 새로운 휴리스틱탐색기법을 설계하고, 이에 가장 적합한 퍼지조건연산자와 알파절단을 제안한다. 제안된 퍼지조건연산자와 알파절단의 검증을 위해 경로경비와 합리적인 경로를 생성하는 알파절단의 개수 관점에서 모든 경우의 퍼지조건연산자와 알파절단에 대해 시뮬레이션 한다. .

  • PDF

Obstacle Avoidance for AUV using CAPM (CAPM을 이용한 AUV의 장애물 회피)

  • 양승윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.17-29
    • /
    • 2001
  • In this paper, we designed the hybrid path generation method which is named CAPM(Continuous path generation method based on artificial Potential field) that is able to be used in the obstacles environment. This CAPM was designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method(CPGM) and the artificial potential field method(APFM). Here, the CAPM generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the APFM generates the path with the artificial potential field in the obstacles environment. But, It has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the CAPM was designed for autonomous underwater vehicle(AUV) obstacle avoidance. As the result of simulation, it was confirmed that the CAPM can be applied to a safe path generation for AUV.

  • PDF

Design of Chattering Free Sliding Mode Controller for AUV (무인 수중 잠수정을 위한 채터링이 없는 슬라이딩 모드 제어기 설계)

  • Kim, Hyoung-Joo;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1850-1851
    • /
    • 2006
  • The sliding mode control is acceptable for Autonomous Underwater Vehicle(AUV), since the dynamics of AUV are highly nonlinear and have several parameter uncertainty such as the added mass terms, the hydrodynamic coefficients. The sliding mode control can deal well with nonlinearity of the system and offers a robustness to controller with parameter uncertainty. Since sliding mode control has the defect of chattering problem, only in ideal case the actuator can respond by control law. Therefore we propose the sliding mode control with non-chattering. And computer simulations illustrate the performance of the proposed controller.

  • PDF

Neural-Net Based Nonlinear Adaptive Control for AUV

  • Li, Ji-Hong;Lee, Sang-Jeong;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.173.4-173
    • /
    • 2001
  • This paper presents a stable nonlinear adaptive control for AUV(Autonomous Underwater Vehicle) by using neural network. AUV's dynamics are highly nonlinear, and their hydrodynamic coefficients vary with different operational conditions. In this paper, the nonlinear uncertainties of the AUV's dynamics are approximated by using LPNN(Linearly parameterized Neural Network). The presented controller is consist of three parallel terms; linear feedback control, sliding mode control, and adaptive control(LPNN). Lyapunov theory is used to guarantee the stability of tracking errors and neural network´s weights errors. Numerical simulations for nonlinear control of the AUV show the effectiveness of the proposed techniques.

  • PDF

Failure Detection of Multi-Sensor Navigation System (다중 센서 항법 시스템에서의 센서 측정 실패 감지 시스템에 관한 연구)

  • 오재석;이판묵;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.51-55
    • /
    • 1997
  • This study is devote to developing navigation filter for detecting sensor failure in multi-sensor navigation system. In multi-sensor navigation system, Kalman filter is generally used to fuse data of each sensors. Sensor failure is fatal in case that the sensor is used as external measurement of Kalman filter therefore detection and recovery of sensor failure is one the important feature of navigation filter. Generally each sensors have its specific feature in measuring navigational information. Fuzzy theory is proposed to detect external sensor failure and provide valid external measurement to Kalman filter avoiding filter divergence and instability. This idea is applied to Autonomous Underwater Vehicle(AUV) which has two navigation sensor i. e self contained inertial sensor and acoustic external sensor. 2 dimensional simulation result shows acceptable failure detection and recovery

  • PDF

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

AUV hull lines optimization with uncertainty parameters based on six sigma reliability design

  • Hou, Yuan hang;Liang, Xiao;Mu, Xu yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.499-507
    • /
    • 2018
  • Autonomous Underwater Vehicle (AUV), which are becoming more and more important in ocean exploitation tasks, needs energy conservation urgently when sailing the complex mission path in long time cruise. As hull lines optimization design becomes the key factor, which closely related with resistance, in AUV preliminary design stage, uncertainty parameters need to be considered seriously. In this research, Myring axial symmetry revolution body with parameterized expression is assumed as AUV hull lines, and its travelling resistance is obtained via modified DATCOM formula. The problems of AUV hull lines design for the minimum travelling resistance with uncertain parameters are studied. Based on reliability-based optimization design technology, Design For Six Sigma (DFSS) for high quality level is conducted, and is proved more reliability for the actual environment disturbance.

Development of a New 5 DOF Mobile Robot Arm and its Motion Control System

  • Choi Hyeung-Sik;Lee Chang-Man;Chun Chang-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1159-1168
    • /
    • 2006
  • In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers w ε re developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the openGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.

An Implementation of PI Controller for the Position Control of Mobile Robot Using LabVIEW (LabVIEW를 이용한 이동로봇 위치제어를 위한 PI제어기 구현)

  • Park, Young-Hwan;Lee, Jae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1241-1246
    • /
    • 2008
  • The dynamics of mobile robot is nonlinear. To cope with this nonlinearity, many advanced control schemes have been proposed recently. Generally, the advanced control schemes are complicated and not good for the practical real-time control when they are implemented as control programs. So, in this paper, a relatively simple PI controller is proposed and applied to the position control of mobile robot with the adoption of reference trajectory calculation method used for the AUV(Autonomous Underwater Vehicle) control. The proposed PI controller is programmed using LabVIEW which is popular for its graphical programming characteristics. The simulation and experimental results show the feasibility and effectiveness of the proposed PI controller.

Implementation of Fish Detection Based on Convolutional Neural Networks (CNN 기반의 물고기 탐지 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.124-129
    • /
    • 2020
  • Autonomous underwater vehicle makes attracts to many researchers. This paper proposes a convolutional neural network (CNN) based fish detection method. Since there are not enough data sets in the process of training, overfitting problem can be occurred in deep learning. To solve the problem, we apply the dropout algorithm to simplify the model. Experimental result showed that the implemented method is promising, and the effectiveness of identification by dropout approach is highly enhanced.