• 제목/요약/키워드: Autonomous Underwater Vehicle(AUV)

검색결과 147건 처리시간 0.022초

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

CAPM을 이용한 AUV의 장애물 회피 (Obstacle Avoidance for AUV using CAPM)

  • 양승윤
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.17-29
    • /
    • 2001
  • In this paper, we designed the hybrid path generation method which is named CAPM(Continuous path generation method based on artificial Potential field) that is able to be used in the obstacles environment. This CAPM was designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method(CPGM) and the artificial potential field method(APFM). Here, the CAPM generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the APFM generates the path with the artificial potential field in the obstacles environment. But, It has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the CAPM was designed for autonomous underwater vehicle(AUV) obstacle avoidance. As the result of simulation, it was confirmed that the CAPM can be applied to a safe path generation for AUV.

  • PDF

Design of Fuzzy PD Depth Controller for an AUV

  • Loc, Mai Ba;Choi, Hyeung-Sik;Kim, Joon-Young;Kim, Yong-Hwan;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a design of fuzzy PD depth controller for the autonomous underwater vehicle entitled KAUV-1. The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed. However, it has inherent drawback of gains, which is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different effects on the behavior of the vehicle. In this reason, control gains need to be appropriately changed according to vehicle operating states for better performance. This paper presents a self-tuning gain for depth controller using the fuzzy logic method which is based on the classical PD controller. The self-tuning gains are outputs of fuzzy logic blocks. The performance of the self-tuning gain controller is simulated using Matlab/Simulink and is compared with that of the classical PD controller.

확장칼만필터를 이용한 호버링타입 무인잠수정의 위치추정알고리즘 개발 (Development of the Localization Algorithm for a Hovering-type Autonomous Underwater Vehicle using Extended Kalman Filter)

  • 강현석;홍승민;서주노;김동희;정재훈;정성훈;최형식;김준영
    • 한국항행학회논문지
    • /
    • 제21권2호
    • /
    • pp.171-178
    • /
    • 2017
  • 본 논문에서는 위성항법장치 (GPS; global positioning system)를 보조센서로 사용하는 위치추정알고리즘의 성능을 검증하기 위해 호버링타입 무인잠수정에 알고리즘을 적용하여 실제 해역에서 실험을 수행하였다. 적용된 알고리즘은 무인잠수정에 탑재된 도플러 속도계 (DVL; doppler velocity logger), TCM (tilt-compensated compass module)을 이용한 추측항법의 시간에 따라 누적되는 위치오차를 개선하기 위한 알고리즘이다. 수면에서 GPS 위치정보를 수신하여 무인잠수정의 위치와 진북에 대한 TCM의 방향각 바이어스 오차를 추정하고, 이를 통해 진북 (geodetic north) 기준의 좌표계에 대한 추측항법을 수행한다. 실제 해역에서 방향각 제어 실험을 수행한 결과, 위치추정알고리즘을 통해 기존 추측항법의 위치오차가 개선되고 TCM의 방향각 바이어스 오차를 추정함을 확인하였다.

광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 알고리즘에 관한 연구 (Study on the Docking Algorithm for Underwater-Docking of an AUV Using Visual Guidance Device)

  • 최동현;전봉환;이판묵;김상현;임근남
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.33-39
    • /
    • 2007
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking device and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI ocean engineering water tank. As AUV ISIMI approachs the docking device, there is some cases of showing an unstable attitude, because the lights which is on Image Frame are disappeared. So we propose the docking algorithm that is fixing the rudder and stem, if the lights on image frame are reaching the specific area in the Image Frame. Also we propose the new docking device, which has a variety of position and light number. In this paper, we intend to solve the some cases of showing an unstable attitude that were found in the testing, which, first, will be identified the validity via simulation.

광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 종단 유도 제어 (Terminal Guidance Control for Underwater-Docking of an AUV Using Visual Guidance Device)

  • 최동현;전봉환;박진영;이판묵;김상현;오준호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.335-338
    • /
    • 2006
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI Ocean Engineering Water Tank. As AUV ISIMI approachs the docking device, it is presented that attitude is unstable, because the lights Which is on Image Frame are disappeared. So we fix the rudder and stem, if the lights on Image Frame are reaching the specific area in the Image Frame. In this paper, we intend to solve the problems that were found in the testing, which, first, will be identified via simulation.

  • PDF

두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬 (Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers)

  • 이판묵;전봉환;홍석원;임용곤;양승일
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.

PID 제어기를 이용한 호버링 AUV의 구현과 자세 제어 (Implementation of Hovering AUV and Its Attitude Control Using PID Controller)

  • 김민지;백운경;하경남;주문갑
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.221-226
    • /
    • 2016
  • An attitude controller for a 6-DOF hovering autonomous underwater vehicle (HAUV) is implemented. We add a vertical thruster, an underwater camera, a wireless communication device, and a DVL to the HAUV that was developed a year ago. The HAUV is composed of 5 thrusters, 2 servo-motors, and 4 apparatus parts. Two rotating thrusters control the surge, heave, and roll of the vehicle. The vertical thruster controls the pitch, and two horizontal thrusters control the sway and yaw of the vehicle. The HAUV’s movement in each direction is controlled by 6 PID controllers. Each PID controller controls the propulsive force and angle of a thruster. In a horizontal and vertical movement experiment, we showed the feasibility of the proposed controller by maintaining a given depth and heading angle of the HAUV.

수중운동체의 자율항행 제어를 위한 휴리스틱 기법 (A heuristic technique for autonomous control of AUV.)

  • 이영일;김용기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (하)
    • /
    • pp.1441-1444
    • /
    • 2000
  • 실시간 정보가 알려지지 않은 해저환경에서 자율수중 운동체(AUV, Autonomous Underwater Vehicle)가 성공적인 임무 수행을 완료하기 위해서는 주어진 목표지점까지의 안전하고 효율적인 경로설정이 선행되어야 한다. 이를 위해 평가함수(evaluation function)에 기반한 휴리스틱 탐색(heuristic search)이 사용되는데 대부분의 평가함수는 목표점까지의 거리, 소모되는 연료로 구성된다[1]. 본 논문에서는 영역전문가가 보유한 장애물회피 관련 경험적 정보(heuristic information)를 반영하여 보다 효율적인 평가함수를 고안하며 후보노드들간의 관계성을 고려한 퍼지관계곱(Fuzzy Relational Products) 기반 휴리스틱 탐색기법을 제안한다. 제안한 탐색기법의 성능을 검증하기 위해 수행시간(cpu time), 경로의 최적화(optimization)정도, 사용 메모리 관점에서 시뮬레이션을 통해 $A^*$ 탐색기법과 비교한다.

  • PDF

보간법을 이용한 무인잠수정 3차원 운동의 효율적인 가시화 기법 (An Efficient 3D Visualization Method of AUV Motion Using Interpolation of Position Data)

  • 이희숙;전봉환;김기훈;김상봉
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.327-330
    • /
    • 2006
  • With the increasing requirements for the survey and development of the ocean, the demands on the of AUV(Autonomous Underwater Vehicle) technologies have been increased. Reconstruction and replay of the AUV motion on the basis of the data stored during the execution of mission, can help the development of control strategies for AUVs such as mission planning and control algorithms. While an AUV cruises for her mission, her attitude and position data are is recorded. The data can be used for visualization of the motion in off-line. However, because most of the position data gathered from acoustic sensors have long time-interval and include intermittent faulty signal, the replayed motion by the graphic simulator can not demonstrate the motion as a smooth movie. In this paper, interpolation methods are surveyed to reconstruct the AUV position data. Then, an efficient 3D visualization method for AUV motion using the interpolation method is proposed. Simulation results arc also included to verify the proposed method.

  • PDF