• Title/Summary/Keyword: Autonomous IoT

Search Result 86, Processing Time 0.026 seconds

Direction of Next-Generation Internet of Things (차세대 사물인터넷에 대한 고찰)

  • Park, J.H.;Son, Y.S.;Park, D.H.;Kim, H.;Hwang, S.K.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The role of Internet of Things (IoT) has been evolving from connectivity to intelligent and autonomous functions. The increase in the number of connected things and the volume of data has revealed the limit of cloud-based intelligent IoT. Meanwhile, the development of microprocessors for the IoT has enabled their intelligent decision making and reactions without the intervention of the cloud; this phase is referred to as the "autonomous IoT era." However, intelligence is not the only function of the IoT. When a cyber physical system (CPS) is running on the cloud, the real-time synchronization between the real and virtual worlds cannot be guaranteed. If a CPS is running on the IoT, both the worlds can be synchronized closely enough for a zero- time gap, i.e., achieving the goals of autonomous IoT. ETRI implements intelligence into the role of IoT and collaborates their decision making and reactions without the intervention of humans. Then, we focus on the development of a new IoT computing paradigm that enables human-like discussions.

Application Scenario of Integrated Development Environment for Autonomous IoT Applications based on Neuromorphic Architecture (뉴로모픽 아키텍처 기반 자율형 IoT 응용 통합개발환경 응용 시나리오)

  • Park, Jisu;Kim, Seoyeon;Kim, Hoinam;Jeong, Jaehyeok;Kim, Kyeongsoo;Jung, Jinman;Yun, Young-Sun
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • As the use of various IoT devices increases, the importance of IoT platforms is also rising. Recently, artificial intelligence technology is being combined with IoT devices, and research applying a neuromorphic architecture to IoT devices with low power is also increasing. In this paper, an application scenario is proposed based on NA-IDE (Neuromorphic Architecture-based autonomous IoT application integrated development environment) with IoT devices and FPGA devices in a GUI format. The proposed scenario connects a camera module to an IoT device, collects MNIST dataset images online, recognizes the collected images through a neuromorphic board, and displays the recognition results through a device module connected to other IoT devices. If the neuromorphic architecture is applied to many IoT devices and used for various application services, the autonomous IoT application integrated development environment based on the neuromorphic architecture is expected to emerge as a core technology leading the 4th industrial revolution.

Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model (AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현)

  • Kim, Seoyeon;Yun, Young-Sun;Eun, Seong-Bae;Cha, Sin;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.71-77
    • /
    • 2021
  • Recently, there is a demand for efficient program development of an IoT application support frameworks considering heterogeneous hardware characteristics. In addition, the scope of hardware support is expanding with the development of neuromorphic architecture that mimics the human brain to learn on their own and enables autonomous computing. However, most existing IoT IDE(Integrated Development Environment), it is difficult to support AI(Artificial Intelligence) or to support services combined with various hardware such as neuromorphic architectures. In this paper, we design an AI component abstract model that supports the second-generation ANN(Artificial Neural Network) and the third-generation SNN(Spiking Neural Network), and implemented an autonomous IoT IDE based on the proposed model. IoT developers can automatically create AI components through the proposed technique without knowledge of AI and SNN. The proposed technique is flexible in code conversion according to runtime, so development productivity is high. Through experimentation of the proposed method, it was confirmed that the conversion delay time due to the VCL(Virtual Component Layer) may occur, but the difference is not significant.

Application on Autonomous Things Monitoring System for IoT Platform of Smart City (스마트시티 IoT플랫폼 구축을 위한 자율사물 모니터링 시스템 적용성 평가)

  • Yoo, Chan Ho;Baek, Seung Cheol
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.103-108
    • /
    • 2020
  • Autonomous things system is a technology that judges and acts based on using surrounding information by itself, and it is evaluated as a future technology that can replace the current IoT technology. The current IoT technology is widely used from facility monitoring to machine control but it is shown weakness as a evaluation and prediction technique despite of smart city important technology. In this study, in order to confirm the application of the autonomous things technology, a monitoring system was installed on a real reservoir dam facility and long-term monitoring was performed that the measuring device itself judges and control as a facility monitoring technology. The autonomous things technology was confirmed during 19 months and it is possible to continuous measurement in the same way as current automated instrumentation. In addition, it was confirmed that the ICT device itself could to control autonomously measurement cycle according to the rainfall by itself.

An Empirical Research on the IoT Basis Gas AMI Platform and Smart Metering Services (IoT 기반 가스 원격검침(AMI) 플랫폼과 서비스의 실증 연구)

  • Lee, Seungwoo;Lee, Sangshin;Song, Min-hwan;Kwon, Youngmin
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • This paper describes the development of a smart advanced metering infrastructure(AMI) architecture and services for using smart metering in gas industry. A general gas AMI system is composed of a smart gas meter, IoT network, the AMI platform, and an operation management system with security functions. The proposed gas AMI platform supports two-way communication between smart metering devices and AMI services and is applied by oneM2M standard to support interoperability between various types of metering devices and heterogeneous IoT networks. To demonstrating AMI system with the proposed platform, we installed about 2,900 smart gas meters in real environments and operated AMI systems for one year. We verified that about 94% of gas meters are normally worked and AMI services are stably operated without error or malfunction.

Automatic Generation Tool for Open Platform-compatible Intelligent IoT Components (오픈 플랫폼 호환 지능형 IoT 컴포넌트 자동 생성 도구)

  • Seoyeon Kim;Jinman Jung;Bongjae Kim;Young-Sun Yoon;Joonhyouk Jang
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.32-39
    • /
    • 2022
  • As IoT applications that provide AI services increase, various hardware and software that support autonomous learning and inference are being developed. However, as the characteristics and constraints of each hardware increase difficulties in developing IoT applications, the development of an integrated platform is required. In this paper, we propose a tool for automatically generating components based on artificial neural networks and spiking neural networks as well as IoT technologies to be compatible with open platforms. The proposed component automatic generation tool supports the creation of components considering the characteristics of various hardware devices through the virtual component layer of IoT and AI and enables automatic application to open platforms.

A Design of IoT based Automatic Control System for Intelligent Smart Home Network (지능형 스마트 홈네트워크를 위한 IoT기반 자동조절시스템 설계)

  • Shim, JeongYon
    • Journal of Internet of Things and Convergence
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • The Internet of Thing (IoT) will be a very important core technology to implement Intelligent Smart Home Network and it will take charge of an important role connected to Smart Phone, Cloud Computing in the Ubiquitous environment. In this paper, Internal Autonomous Regulation by human autonomic nervous system was studied and its core mechanism was applied to the design of IoT based Autonomous Regulation System for Intelligent Smart Home Network. We proposed an autonomous regulating mechanism in which the factors of Temperature, Humidity and Illumination are automatically adjusted as they communicate with the connected things.

Design and Implementation of Smart City Data Marketplace based on oneM2M Standard IoT Platform (oneM2M 표준 IoT 플랫폼 기반 스마트시티 데이터 마켓플레이스 설계 및 구현)

  • Jeong, SeungMyeong;Kim, Seong-yun;Lee, In-Song
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.157-166
    • /
    • 2019
  • oneM2M has been adopted to national and global smart city platforms leveraging its benefits, oneM2M platform assures interoperability to devices and services with standard APIs. Existing access control mechanisms in the standard should be extended to easily distribute smart city data. Compared to the as-is standard, this paper proposes a new access control method with minimum human interventions during data distribution between data sellers and buyers. The proposal has been implemented as the new data marketplace APIs to oneM2M platform and used for data marketplace portal interworking. This also has been demonstrated with smart city PoC service.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

Self-adaptive IoT Software Platform for Interoperable Standard-based IoT Systems (협업가능 표준기반 IoT 시스템을 위한 자가적응 IoT 소프트웨어 플랫폼 개발)

  • Sung, Nak-Myoung;Yun, Jaeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2017
  • In this paper, we present a self-adaptive software platform that enables an IoT gateway to perform autonomous operation considering IoT devices connected each other in resource-constrained environments. Based on the oneM2M device software platform publicly available, we have designed an additional part, called SAS (self-adaptive software) consisting of MAM (memory-aware module), NAM (network-aware module), BAM (battery-aware module), DAM (data-aware module), and DH (decision handler). A prototype system is implemented to show the feasibility of the proposed self-adaptive software architecture. Our proposed system demonstrates that it can adaptively adjust the operation of gateway and connected devices to their resource conditions under the desired service scenarios.