• Title/Summary/Keyword: Autonomous Driving Drone

Search Result 21, Processing Time 0.028 seconds

Autonomous Drone Navigation in the hallway using Convolution Neural Network (실내 복도환경에서의 컨벌루션 신경망을 이용한 드론의 자율주행 연구)

  • Jo, Jeong Won;Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.936-942
    • /
    • 2019
  • Autonomous driving of drone indoor must move along a narrow path and overcome other factors such as lighting, topographic characteristics, obstacles. In addition, it is difficult to operate the drone in the hallway because of insufficient texture and the lack of its diversity comparing with the complicated environment. In this paper, we study an autonomous drone navigation using Convolution Neural Network(CNN) in indoor environment. The proposed method receives an image from the front camera of the drone and then steers the drone by predicting the next path based on the image. As a result of a total of 38 autonomous drone navigation tests, it was confirmed that a drone was successfully navigating in the indoor environment by the proposed method without hitting the walls or doors in the hallway.

Smart Drone Police System: Development of Autonomous Patrol and Real-time Activation System Based on Big Data and AI

  • Heo Jun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.168-173
    • /
    • 2024
  • This paper proposes a solution for innovating crime prevention and real-time response through the development of the Smart Drone Police System. The system integrates big data, artificial intelligence (AI), the Internet of Things (IoT), and autonomous drone driving technologies [2][5]. It stores and analyzes crime statistics from the Statistics Office and the Public Prosecutor's Office, as well as real-time data collected by drones, including location, video, and audio, in a cloud-based database [6][7]. By predicting high-risk areas and peak times for crimes, drones autonomously patrol these identified zones using a self-driving algorithm [5][8]. Equipped with video and voice recognition technologies, the drones detect dangerous situations in real-time and recognize threats using deep learning-based analysis, sending immediate alerts to the police control center [3][9]. When necessary, drones form an ad-hoc network to coordinate efforts in tracking suspects and blocking escape routes, providing crucial support for police dispatch and arrest operations [2][11]. To ensure sustained operation, solar and wireless charging technologies were introduced, enabling prolonged patrols that reduce operational costs while maintaining continuous surveillance and crime prevention [8][10]. Research confirms that the Smart Drone Police System is significantly more cost-effective than CCTV or patrol car-based systems, showing a 40% improvement in real-time response speed and a 25% increase in crime prevention effectiveness over traditional CCTV setups [1][2][14]. This system addresses police staffing shortages and contributes to building safer urban environments by enhancing response times and crime prevention capabilities [4].

Autonomous-flight Drone Algorithm use Computer vision and GPS (컴퓨터 비전과 GPS를 이용한 드론 자율 비행 알고리즘)

  • Kim, Junghwan;Kim, Shik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • This paper introduces an algorithm to middle-low price drone's autonomous navigation flight system using computer vision and GPS. Existing drone operative system mainly contains using methods such as, by inputting course of the path to the installed software of the particular drone in advance of the flight or following the signal that is transmitted from the controller. However, this paper introduces new algorithm that allows autonomous navigation flight system to locate specific place, specific shape of the place and specific space in an area that the user wishes to discover. Technology developed for military industry purpose was implemented on a lower-quality hobby drones without changing its hardware, and used this paper's algorithm to maximize the performance. Camera mounted on middle-low price drone will process the image which meets user's needs will look through and search for specific area of interest when the user inputs certain image of places it wishes to find. By using this algorithm, middle-low price drone's autonomous navigation flight system expect to be apply to a variety of industries.

Comparison & Analysis of Drones in Major Countries based on Self-Driving in IoT Environment (사물인터넷 환경에서 자율주행 기반의 주요국 드론 특성 비교/분석)

  • Lee, Dong-Woo;Cho, Kwangmoon;Lee, Seong-Hoon
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.31-36
    • /
    • 2020
  • The remarkable change in the automobile industry, which is a traditional industrial field, is now evolving into a form of moving toward autonomous functions rather than humans due to various convenience functions and automatic driving or autonomous driving technologies if the person was central when driving the car. This situation is expanding to various industries such as the aviation industry and the drone market, as well as the robot market. The drone market in the aviation industry is being used in various fields due to the unmanned nature of drone operation. Among them, military drones are secret and due to the specificity of technology, details are not disclosed, but as a collection of advanced technologies, they have played a key role in drone development. In this study, the current status of China and the European Union, including the United States, which are major competitors in the drone field, was investigated, and the technologies of major countries were compared and analyzed through the characteristics and operational specifications of the drones currently in operation.

Performance Evaluation of the Low-cost, High-precision RTK Device RTAP2U for GPS-based Precise Localization

  • Kim, Hye-In;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The need for precise location data is growing across numerous markets, and so is the number of affordable high-precision GPS receivers. In this paper, we validated the performance of RTAP2U, a low-cost high-precision RTK receiver that was recently released. Two positioning modes were tested: static and driving. The static test conducted Zero-Baseline Single-RTK and Network-RTK survey for 57 hours and 51 hours, respectively. For the driving test, Network-RTK survey was conducted using VRS services provided by NGII based on Trimble PIVOT and Geo++ GNSMART. The static test showed about 1 cm horizontal and vertical accuracies, which is very stable considering the test duration longer than 50 hours. The integer ambiguity FIX rate marked a solid 100%. The driving test result also reached a 100% FIX rate. Horizontal and vertical accuracies were better than 2 cm and 3 cm, respectively. Researchers can refer to this paper when considering affordable high-precision GPS receivers as an option.

Unmanned Last Mile Delivery Technology Level Analysis (무인 라스트마일 배송 기술 수준 분석)

  • Wooyeon Yu;Eunhye Kim;Dohyun Kim;Jaekyung Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.225-232
    • /
    • 2022
  • Recently, unmanned logistics delivery systems, such as UAV (Unmanned Aerial Vehicle, written as drone below) and autonomous robot delivery systems, have been implemented in many countries due to the rapid development of autonomous driving technology. The development of these new types of advanced unmanned logistics delivery systems is essential not only to become a leading logistics company but also to secure national competitiveness. In this paper, the application of the unmanned logistics delivery system was investigated in terms of market trends, overall technology level of last mile delivery drone and autonomous delivery robot. The direction of response to changes in the last mile delivery service market was checked through a comparison of the technological level between domestic companies that produce last mile devices and advanced foreign companies. As a result of this technology level analysis, the difference between domestic companies and advanced companies was shown using tables and figures to show their relative levels. The results of this analysis reflect the opinions of experts in the field of last-mile delivery technology. In addition, the technology level of unmanned logistics delivery systems for each country was analyzed based on the number of related technology patents. Lastly, insights for the technology level analysis of unmanned last mile delivery systems were proposed as a conclusion.

A Study on Legal Problems over Unmanned Vehicle of the Fourth Industrial Revolution - Focusing on the Autonomous Driving Vehicle and Drone - (제4차 산업혁명 시대의 무인 이동체를 둘러싼 법적 문제점 연구 - 자율주행자동차와 드론을 중심으로 -)

  • Kye, Kyoung-Moon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.519-527
    • /
    • 2017
  • The trust issue on the safety of autonomous vehicle is a very important in regard to the demand generation of relevant industries. To secure the trust, The study of legal liability issue should be prior to an accident of the autonomous vehicle. In civil law, it is possible to make the automobile manufacturer take legal responsibility with the "Product Liability Act". Whereas, in criminal law, it is difficult to make him take legal responsibility since the criminal law holds the actor responsible. To solve these problems, this article proposes the establishment of the "Special Act on Autonomous Vehicle". Also, there is a demand for building infra structures and system to operate the (fully) self-propelled vehicle and establishing "certification" systems.

A Study on the Library Activation Plan Using Autonomous Objects (자율사물을 활용한 도서관 활성화 방안 연구)

  • Noh, Younghee;Shin, Youngji
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.1
    • /
    • pp.27-54
    • /
    • 2021
  • This study examines the overall contents of robots, drones, and autonomous driving that can be applied to libraries among autonomous objects, and proposes a plan that can be introduced and applied to libraries in the future based on this. As a result of the study, in the case of the building, robots and drones can be used to apply from collection inspection, collection transport, collection arrangement, collection classification, book location guidance, book recommendation, loan/return, library general guidance, and reference information service. Outside of the building, robots, drones, and autonomous vehicles can be used for book delivery service, book return service, and unmanned mobile libraries. This study is a basic research for the introduction and application of autonomous objects in the library, and follow-up studies such as perception survey and application model development for systematic introduction should be conducted in the future.

Vehicle Reference Dynamics Estimation by Speed and Heading Information Sensed from a Distant Point

  • Yun, Jeonghyeon;Kim, Gyeongmin;Cho, Minhyoung;Park, Byungwoon;Seo, Howon;Kim, Jinsung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • As intelligent autonomous driving vehicle development has become a big topic around the world, accurate reference dynamics estimation has been more important than before. Current systems generally use speed and heading information sensed from a distant point as a vehicle reference dynamic, however, the dynamics between different points are not same especially during rotating motions. In order to estimate properly estimate the reference dynamics from the information such as velocity and heading sensed at a point distant from the reference point such as center of gravity, this study proposes estimating reference dynamics from any location in the vehicle by combining the Bicycle and Ackermann models. A test system was constructed by implementing multiple GNSS/INS equipment on an Robot Operating System (ROS) and an actual car. Angle and speed errors of 10° and 0.2 m/s have been reduced to 0.2° and 0.06 m/s after applying the suggested method.

Artificial Intelligence-Based Harmful Birds Detection Control System (인공지능 기반 유해조류 탐지 관제 시스템)

  • Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.175-182
    • /
    • 2021
  • The purpose of this paper is to develop a machine learning-based marine drone to prevent the farming from harmful birds such as ducks. Existing drones have been developed as marine drones to solve the problem of being lost if they collide with birds in the air or are in the sea. We designed a CNN-based learning algorithm to judge harmful birds that appear on the sea by maritime drones operating by autonomous driving. It is designed to transmit video to the control PC by connecting the Raspberry Pi to the camera for location recognition and tracking of harmful birds. After creating a map linked with the location GPS coordinates in advance at the mobile-based control center, the GPS location value for the location of the harmful bird is received and provided, so that a marine drone is dispatched to combat the harmful bird. A bird fighting drone system was designed and implemented.