The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.5
/
pp.186-201
/
2021
As autonomous driving technology advances, the accuracy of the vehicle position is important for recognizing the environments around driving. Map-matching localization techniques based on high definition (HD) maps have been studied to improve localization accuracy. Because conventional map-matching techniques estimate the vehicle position based on an HD map reference dataset representing the center of the lane, the estimated position does not reflect the deviation of the lateral distance within the lane. Therefore, this paper proposes a localization system based on the reference lateral position dataset extracted using image processing and HD maps. Image processing extracts the driving lane number using inverse perspective mapping, multi-lane detection, and yellow central lane detection. The lane departure method estimates the lateral distance within the lane. To collect the lateral position reference dataset, this approach involves two processes: (i) the link and lane node is extracted based on the lane number obtained from image processing and position from GNSS/INS, and (ii) the lateral position is matched with the extracted link and lane node. Finally, the vehicle position is estimated by matching the GNSS/INS local trajectory and the reference lateral position dataset. The performance of the proposed method was evaluated by experiments carried out on a highway environment. It was confirmed that the proposed method improves accuracy by about 1.0m compared to GNSS / INS, and improves accuracy by about 0.04m~0.21m (7~30%) for each section when compared with the existing lane-level map matching method.
Future automobiles are evolving into movable living spaces capable of eco-friendly autonomous driving. The role of electrically processing, controlling, and commanding various information in the vehicle is essential. It is expected that the automotive semiconductor will play a key role in the future automobile such as self-driving and eco-friendly automobile. In order to foster the automotive semiconductor industry, it is necessary to grasp technology trends and to acquire technology and quality that reflects the requirements in advance, thereby achieving technological innovation with industrial competitiveness. However, there is a lack of systematic analysis of technology trends to date. In this study, we analyzed the technology trends of automotive semiconductors using patent analysis and topic model, and confirmed technologies such as electric cars, driving assistance, and digital manufacturing. The technology trends showed that element technology and technical characteristics change according to technology convergence, market needs, and government regulations. Through this research, it is expected that it will help to make R&D policy for automotive semiconductor industry and to make decision for industrial technology strategy establishment. In addition, it is expected that it will be used effectively in detail research direction and patent strategy establishment by providing detailed classification of technology and trend analysis result of technology.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.687-692
/
2018
In this paper, the development of an automotive thermal imaging camera providing image information for ADAS (Advanced Driver Assist System) and autonomous vehicles is described and an improved technique to enhance the details of the image is proposed. Thermal imaging cameras are used in various fields, such as the medical, industrial and military fields, for the purpose of temperature measurement and night vision. In automobiles, they are utilized for night vision systems. For their utilization in ADAS and autonomous vehicles, appropriate image resolution and enhanced detail are required for object recognition. In this study, a $640{\times}480$ resolution thermal imaging camera that can be applied to automobiles is developed and the BDE (Block-Range Detail Enhancement) technique is applied to improve the details of the image. In order to improve the image detail obtained in various driving environments, the block-range values between the target pixel and the surrounding 8 pixels are calculated and classified into 5 levels. Then, different factors are added or subtracted to obtain images with high utilization. The improved technique distinguishes the dark part of the image by the resulting temperature difference of 130mK and shows an improvement in the fine detail in both the bright and dark parts of the image. The developed thermal imaging camera using the improved detail enhancement technique is applied to a test vehicle and the results are presented.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.1
/
pp.71-78
/
2018
Transportation is gradually changing into the era of V2X and autonomous cars. Accurate judgement of traffic conditions is an important indicator of route choice or autonomous driving. There are many ways to use probes car such as taxis, as a way to identify accurate traffic conditions. These methods may vary depending on the characteristics of the probe vehicle, and there is a problem with the cost. The V2X vehicle can solve these problems and collect traffic information in real time. If all vehicles are of V2X vehicle, these issues are expected to be resolved briefly. However, if the communication information of a V2X vehicle is represented by a traffic representative in a traffic with only V2X, the traffic information of some V2X vehicles will be able to collect traffic information. To accomplish this, a virtual network and transport were created and various scenarios were performed through SUMO simulations. It has been analyzed that 3-5 % of V2 vehicles are capable of representative the road traffic characteristics. In the future, various follow-up studies are planned.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.10
/
pp.274-280
/
2017
The smart-car industry has emerged as the important variable that will decide the future industrial contour of the automotive industry, together with commercialization of electronic vehicles, connected cars, infotainment, telematics, and the autonomous/self-driving car. This study analyzes the strategic position of platform companies and car manufacturers that would determine the future of the smart-car market. The findings of this study show that despite the entry barriers in industrial factors, such as economies of scale, the industrial infrastructure, and global production networks, and technical factors like exclusive head-sector information, car manufacturers may be deprived of their industrial leadership by platform companies with map and user data, big data capabilities, and user interface experience if they lag behind ICT innovation. This insight is based on the emerging importance of software and platforms, and the simplification of car structures, proven by the successful commercialization of electronic vehicles. This study complements existing studies mainly focused on technical aspects of the smart-car industry by examining the strategic dimensions of platform companies and their approach to the future smart-car market by comparing them with existing car manufacturing multinationals.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.13
no.5
/
pp.323-330
/
2020
This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random forest, a Random Forest based Road Roughness Classification Module that distinguish the roughness of the road on which the vehicle is travelling by using the weather information and the front image of a vehicle as an input, and a brake pressure control module that modifies a friction coefficient applied to the vehicle according to the road roughness and determines the braking strength to maintain optimal driving according to a vehicle ahead. To verify the efficiency of the BPCS experiment was conducted with a random forest model. The result of the experiment shows that the accuracy of the random forest model was about 2% higher than that of the SVM, and that 7 features should be bagged to make an accurate random forest model. Therefore, the BPCS satisfies both real-time and accuracy in situations where the vehicle needs to brake.
Journal of Korean Library and Information Science Society
/
v.52
no.1
/
pp.155-178
/
2021
In the era of the 4th industrial revolution, public libraries need a strategy for promoting intelligent library services in order to actively respond to changes in the external environment such as artificial intelligence. Therefore, in this study, based on the concept of artificial intelligence and analysis of domestic and foreign artificial intelligence related trends, policies, and cases, we proposed the future direction of introduction and development of artificial intelligence services in the library. Currently, the library operates a reference information service that automatically provides answers through the introduction of artificial intelligence technologies such as deep learning and natural language processing, and develops a big data-based AI book recommendation and automatic book inspection system to increase business utilization and provide customized services for users. Has been provided. In the field of companies and industries, regardless of domestic and overseas, we are developing and servicing technologies based on autonomous driving using artificial intelligence, personal customization, etc., and providing optimal results by self-learning information using deep learning. It is developed in the form of an equation. Accordingly, in the future, libraries will utilize artificial intelligence to recommend personalized books based on the user's usage records, recommend reading and culture programs, and introduce real-time delivery services through transport methods such as autonomous drones and cars in the case of book delivery service. Service development should be promoted.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.1
/
pp.240-257
/
2022
Autonomous vehicles use various local sensors such as camera, radar, and lidar to perceive the surrounding environment. However, it is difficult to predict the movement of vulnerable road users using only local sensors that are subject to limits in cognitive range. This is true especially when these users are blocked from view by obstacles. Hence, this paper developed an algorithm for collision avoidance with VRU using V2X information. The main purpose of this collision avoidance system is to overcome the limitations of the local sensors. The algorithm first evaluates the risk of collision, based on the current driving condition and the V2X information of the VRU. Subsequently, the algorithm takes one of four evasive actions; steering, braking, steering after braking, and braking after steering. A simulation was performed under various conditions. The results of the simulation confirmed that the algorithm could significantly improve the performance of the collision avoidance system while securing vehicle stability during evasive maneuvers.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.5
/
pp.409-416
/
2020
Artificial intelligence, which is in the spotlight as the core driving force of the 4th industrial revolution, is expanding its scope to various industrial fields such as smart factories and autonomous driving with the development of high-performance hardware, big data, data processing technology, learning methods and algorithms. In the field of defense, as the security environment has changed due to decreasing defense budget, reducing military service resources, and universalizing unmanned combat systems, advanced countries are also conducting technical and policy research to incorporate artificial intelligence into their work by including recognition systems, decision support, simplification of the work processes, and efficient resource utilization. For this reason, the importance of technology-driven planning and investigation is also increasing to discover and research potential defense future technologies. In this study, based on the research data that was collected to derive future defense technologies, we analyzed the characteristic evaluation indicators for future technologies in the field of artificial intelligence and conducted empirical studies. The study results confirmed that in the future technologies of the defense AI field, the applicability of the weapon system and the economic ripple effect will show a significant relationship with the prospect.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.6
/
pp.124-136
/
2019
Autonomous driving at intersections requires assistance by exchanging traffic information between traffic objects due to the intersection of various vehicles and complicated driving environment. For this reason, traffic information exchange between adjacent intersections is required, but the node ID representing the intersection in the Korean standard node link system have limitations in updating intersections and identifying location information of intersections through IDs due to the configuration system including serial numbers. In this paper, we designed a coordinate-based intersection ID configuration system created by processing and merging two-dimensional coordinates of intersections to include location information in the intersection ID. In order to verify the applicability of the proposed intersection ID, we applied a new intersection ID to domestic intersections and confirmed that there are no duplicate values. Coordinate-based intersection ID reduces data size by 60% compared to existing node ID, and enables spatial queries such as searching for nearby intersections and extracting intersections in specific areas in the form of boxes without GIS tools. Therefore, coordinate-based intersection ID is expected to be more scalable and utilized than existing node ID.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.