• Title/Summary/Keyword: Autonomous

Search Result 4,981, Processing Time 0.038 seconds

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

An Analysis of the Autonomous Regional Development ("자립적 지역사회개발론${\rceil}$에 대한 연구)

  • Kim, Soo-Suk
    • Journal of Agricultural Extension & Community Development
    • /
    • v.4 no.1
    • /
    • pp.29-40
    • /
    • 1997
  • This study aims to analyze the model of 'autonomous regional development', which was initiated in 1980s in Austria, then introduced into Germany and Switzerland. The basic ideas of autonomous regional development are constructed of the peculiarity, the autonomy, the integrity, and the project promotion. The subjects of the development-four poles of the model 'autonomous regional development' -are designed of the land residents, the regional advisers, the regional associations and the state. The concret measures to realize the autonomous regional development are the realization of independent regional economic structures, the autonomy of political decision-makings, and the development of peculiar rural cultures. The autonomous regional development is a new development model, which is founded on the right basic principles. In this model the initiative of the residents is emphasized, and the real autonomy of regional development is required. The principle of autonomy leads to the development of peculiar rural cultures, which keep the peculiarity of the region. The development of rural culture contributes in turn to restoring the identity of residents, which may become a driving force of the rural development.

  • PDF

A MULTIPLE AUTONOMOUS ROBOTS SYSTEM -HARDWARE AND COMMUNICATION

  • Johari, W.A.;Nohira, M.;Yamauchi, Y.;Ishikawa, S.;Kato, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.485-490
    • /
    • 1992
  • This paper describes a hardware structure and a communication system of a multiple autonomous robots system. Many studies have been devoted to the development of a single autonomous robot. It is, however, also necessary to investigate decentralized multiple autonomous robots system in order to make wider use of such robots. We have been studying a multiple autonomous robots system employing two mobile robots. In this paper, problems are overviewed on the developed multiple autonomous robots system from the viewpoint of hardware and communication, and an improved system is presented, which employs a new control strategy of a mobile robot and realizes reliable data communication between host computers.

  • PDF

Conceptual design of autonomous emergency operation system for nuclear power plants and its prototype

  • Kim, Jonghyun;Lee, Deail;Yang, Jaemin;Lee, Subong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.308-322
    • /
    • 2020
  • This paper presents a conceptual design for a plant-wide autonomous operation system that uses artificial intelligence techniques. The autonomous operation system has the power and ability to perform the control functions needed for the emergency operation of a nuclear power plant (NPP) with reduced operator intervention. This paper discusses the emergency operation and level of automation in an NPP and presents the design requirements for an autonomous emergency operation system (A-EOS). Then, an architecture that consists of several modules is proposed, with descriptions of the functions. Finally, this paper introduces a prototype of the suggested autonomous system that integrates the authors' previous works.

Map-Based Control for Autonomous Tractors

  • Han, S.;Shin, B.S.;Zhang, Q.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.22-27
    • /
    • 2003
  • An autonomous tractor requires not only automatic steering (automatic guidance) but also automated control of tractor functions and implement operations. Examples of tractor functions include engine throttle, transmission speed, and 3-point hitch position. Implement operations include tillage, planting, and cultivating. This article provides an overview of a map-based methodology used for the implementation of autonomous field operations of agricultural tractors. The procedure for developing autonomous field operation maps were presented, and several important issues in the implementation of map-based autonomous operations were discussed. These issues included combining field operation maps, position offset, and real-time sensing and update of field operation maps.

  • PDF

Local Path Planning Manager for Autonomous Navigation of UGV (무인차량의 자율주행을 위한 지역경로계획 매니저)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.990-997
    • /
    • 2010
  • The Mission environment of UGV(Unmanned Ground Vehicle) has a complexity and variety, and the status of system and sensor is dependent on the environment factors such as operation time, the weather and road type. It is necessary for UGV to cope adaptively with the various mission types, operation modes and operation environment as human operators do. To satisfy this necessity, we present an autonomy manager based on the autonomous architecture. In this paper, we design a path planning software architecture and LPP manager by using open autonomous architecture which is previously designed by ADD. Field test is conducted with UGV in order to verify the performance of LPP Manager based on the Autonomous Architecture with scenarios.

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Autonomous Driving Acceleration Estimation Model According to the Slope of the Road (도로의 경사도에 따른 자율주행 가속도 추정 모델)

  • Park, KyeoungWook;Heo, Myungseon;Oh, Youngchul;Han, Jihyeong;Jeong, HwaHyen;You, Byungyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.285-292
    • /
    • 2021
  • Autonomous vehicles are divided into an upper controller that calculates control value through cognitive judgment and a lower controller that appropriately transmits its control value to an actuator. Here, the longitudinal control in a lower controller has a problem as the road slopes due to the property of the Acceleration sensor to output the acceleration as the slope of the device. Therefore, in this paper, a sigmoid function is proposed to determine the slope to compensate for this problem. Through the experiment, Checked performance by comparing the existing table model with the proposed model.

Intersections Accident Simulation of Automated Vehicles based on Actual Accident Database (국내 실사고 기반 자율주행차 교차로 사고 시뮬레이션)

  • Shin, Yunsik;Park, Yohan;Shin, Jae-Kon;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.106-113
    • /
    • 2021
  • In this study, The behavior of an autonomous vehicle in an intersection accident situation is predicted. Based on a representative intersection accident situation from actual intersection accident database, simulation was performed by applying the automatic emergency braking algorithm used in the autonomous driving system. Accident reconstruction was performed based on the accident report of the representative accident situation. After applying the autonomous driving system to the accident-related vehicle, the tendency of intersection accidents that may occur in autonomous vehicles was identified and analyzed.