• Title/Summary/Keyword: Autonomic regulation

Search Result 51, Processing Time 0.024 seconds

Effect of Transient Isokinetic Exercise on Cardiac Autonomic Nervous Modulation and Muscle Properties (일회성 등속성 운동이 심장 자율신경 조절 및 근속성에 미치는 영향)

  • Soo-Kyoung Park;Si-Eun Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Purpose : The aim of this study was to identify the influence of transient isokinetic exercise on cardiac autonomic modulation and muscle properties in healthy male subjects. Methods : Twenty-eight healthy males underwent isokinetic exercise of both knee joints using a Biodex systems 3 isokinetic dynamometer with an angular velocity of 60 °/sec. The changes in activity of the autonomic nervous system, as determined by heart rate variability (HRV), and in muscle properties were evaluated at three times: pre-exercise, immediately post-exercise, and 10 min post-exercise. Results : The time domain analysis of HRV revealed significant changes in the beat count and mean and minimal heart rate (HR) measured at pre-exercise, immediately post-exercise, and 10 min post-exercise (p<.001). The beat count and mean HR were markedly increased immediately post-exercise compared to pre-exercise, but then significantly decreased at 10 min post-exercise (p<.001). All parameters of the frequency domain were significantly altered by isokinetic exercise (p<.01). The low frequency/high frequency (LF/HF) ratio, as an index for the sympathovagal balance, was elevated by exercise and remained at a similarly high level at 10 min post-exercise (p<.01). The muscle properties of rectus femoris were changed as follows: Muscle tone and stiffness were significantly increased between pre-exercise and immediately post-exercise (p<.001), and between pre-exercise and at 10 min post-exercise (p<.001). Whereas, the elasticity showed no significant change. Conclusion : These results demonstrated that transient isokinetic exercise could induce changes in cardiac autonomic control and muscle properties. In particular, up-regulation of LF/HF ratio after exercise signifies thus enhanced sympathetic modulation by isokinetic exercise. Therefore, it is needed to understand the cardiovascular risks that may arise during isokinetic exercise for providing the basic evidence to establish appropriate isokinetic exercise protocols as effective rehabilitation exercises.

The Effect of Progressive Muscle Relaxation Therapy on Autonomic Nerve System (점진적(漸進的) 근육이완법(筋肉弛緩法)이 자율신경계(自律神經系)에 미치는 영향(影響))

  • Lee, Jae-Hyok;Lee, Je-Kyun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.111-122
    • /
    • 2007
  • Objective : Progressive muscle relaxation(PMR) therapy is the way of mind and body self-regulation which makes major muscles tension to be comfortable condition. It was considered to be important to check the level of relaxation in objective validity. Therefore, Heart rate variability(HRV) is the valuable measurement to investigate the effect of progressive muscle relaxation therapy on autonomic nerve system. Method : I studied 38 subjects. The subjects were measured HRV at first. And then, Using a CD player, the subjects listened to recorded PMR program for 15 minutes. After this progress, I rechecked HRV. Results : heart rate item of HRV was significantly decreased. Also, the numerical value of SDNN(standard deviation of all NN intervals) and SDSD(standard deviation of differences between adjacent NN intervals) items of HRV were showed significantly increased in all subjects after PMR. Conclusion : It indicated that PMR is efficient for inspiring resistance of the stress and a sense of stability, and PMR is a valuable method to reduce the mind stress and stiffness of body muscle.

  • PDF

Cardiac Vagal Tone as an Index of Autonomic Nervous Function in Healthy Newborn and Premature Infants

  • Lee, Hae-Kyung
    • Child Health Nursing Research
    • /
    • v.15 no.3
    • /
    • pp.299-305
    • /
    • 2009
  • Purpose: Multiple studies have documented that high resting levels of cardiac vagal tone suggest higher levels of self-regulation. The aim of this study was to evaluate cardiac vagal tone as an indicator of autonomic nervous function in healthy newborn and premature infants. Methods: This study was conducted using a descriptive comparison design and a convenience sampling strategy. The participants were 72 healthy and 62 premature infants delivered in a university hospital. Continuous heart rate data recordings from the infant's ECG were analyzed and Mxedit software was used to calculate mean heart period and an index of cardiac vagal tone. Results: The healthy infants had significantly higher cardiac vagal tone than the premature infants, when the influence of gestational age was removed using analysis of covariance. However, there were no significant differences in heart rate and heart period between the two groups when the influence of gestational age was removed using analysis of covariance. Conclusion: The results of this study show that cardiac vagal tone may be used as an index for determining infant's autonomic nervous function. Nursing staff in pediatric departments can use cardiac vagal tone with ease, as this index can be calculated in a noninvasive method from the ECG.

  • PDF

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

Effects of Ethanol on Neurohumoral Mechanisms for Blood Pressure Regulation in Hemorrhaged Conscious Rats

  • Park, Yoon-Yub;Park, Jae-Sik;Lee, Won-Jung
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.91-102
    • /
    • 1995
  • The role of neurohumoral mechanisms in the regulation of cardiovascular functions and the effects of ethanol (EOH) on these mechanisms were examined in hemorrhaged conscious Wistar rats. The rats were bled at a constant rate (2 ml/kg/min) through the femoral artery until mean arterial pressure (MAP) was reduced by 30 mmHg. We studied the responses to hemorrhage 1) under normal conditions (Normal), and after pretreatments with 2) neural blockade (NB), pentolinium, 3) arginine vasopressin V1-receptor antagonist (AVPX) + NB, 4) angiotensin II ATI-receptor antagonist (AngIIX) + NB, 5) combined humoral blockade (HB), and 6) neurohumoral blockade. Intravenous administration of 30% EOH (6.3 ml/kg) attenuated the baroreceptor reflex sensitivity, and enhanced the depressor action of AngIIX. During hemorrhage, NB produced a faster fall ill MAP than Normal both in the saline and EOH groups. However, HB accelerated the rate of fall in MAP only in the EOH group. The recovery from hemorrhagic hypotension was not different between NB and Normal rats, but was attenuated in HB rats in the saline group. Under NB, AngIIX, but not AVPX, retarded the recovery rate compared with NB alone. EOH attenuated the recovery of MAP after hemorrhage in Normal rats, but completely abolished the recovery in HB rats. We conclude that 1) the maintenance of MAP during hemorrhage is mediated almost entirely by the autonomic functions, 2) angiotensin II plays an important role in the recovery from hemorrhagic hypotension, but AVP assumes little importance, 3) AVP release largely depends on the changes in blood volume, whereas renin release depends on the changes in blood pressure rather than blood volume, and 4) EOH increases the dependence of cardiovascular regulation on angiotensin II and impairs the recovery from hemorrhagic hypotension through the attenuation of autonomic functions.

  • PDF

Influence of Electronic-cigarette Smoke on Cardiac Autonomic Nerve Responses in Comparison with Conventional-cigarette Smoke (전자담배흡연이 심장자율신경조절에 미치는 반응: 궐련담배와의 비교 검증)

  • Kim, Choun Sub;Kim, Maeng Kyu
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.587-596
    • /
    • 2018
  • This study aims to observe changes in heart-rate variability (HRV) indices induced by e-cigarette and conventional-cigarette smoking and to compare the differences in acute cardiac autonomic regulation. All participants (n=41) were exposed to both e-cigarette smoke (ES) and conventional cigarette smoke (CS) in a randomized crossover trial. HRV analysis was performed during each smoking session based on a recorded r-r interval 10 minutes before smoking and at specified recovery periods (REC1, 0-5 min; REC2, 5-10 min; REC3, 10-15 min; REC4, 15-20 min; REC5, 20-25 min; and REC6, 25-30 min). ES led to a significantly increased cardiac sympathetic index (LF/HF ratio) compared with the baseline, and it shifted the sympathovagal balance toward sympathetic predominance, including reduction in the complexity of the interbeat interval (SampEn). In REC1 after ES, only decreases of parasympathetic indices such as rMSSD, pNN50, HF, and SD1 were indicated. CS sessions produced not only an increased LF/HF ratio during smoking and recovery periods (REC1 and REC4) but also enhanced sympathetic predominance on autonomic balance during smoking and recovery periods (REC1, REC2, and REC4). In the CS trials, parasympathetic indices of time and non-linear analysis (rMSSD, pNN50, and SD1) were decreased during smoking and in REC1 to REC5. SampEn was also reduced during smoking and REC1 to REC4. Acute sympathoexcitatory effects induced by e-cigarette use produced statistically significant results. Parasympathetic withdrawal after smoking suggests that e-cigarettes may cause increased cardiovascular risk.

Do Opioid Receptors Play a Role in Blood Pressure Regulation?

  • Rhee, H.M.;Holaday, J.W.;Long, J.B.;Gaumann, M.D.;Yaksh, T.L.;Tyce, G.M.;Dixon, W.R.;Chang, A.P.;Mastrianni, J.A.;Mosqueda-Garcia, R.;Kunos, G.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.153-164
    • /
    • 1988
  • The potential role of endogenous opioid peptides (EOPS) in cardiovascular regulation has only recently been entertained. EOPS have been localized in brain, spinal cord, autonomic ganglia, particularly the adrenal gland, and many other peripheral tissues. There are at least five major types of opioid receptors; namely ${\mu},\;{\delta},\;k,\;{\sigma},\;and\;{\varepsilon}$ and Experimental evidence indicates that cardiovascular actions of the peptide are mediated primarily by ${\mu},\;{\delta}$ and k receptors, and that these receptor types may be allosterically coupled. In anesthetized rabbits met-enkephalin decreased blood pressure and heart rate, which closely paralleled a reduction in sympathetic discharge. Naloxone, but not naloxone methobromide, antagonized these effects, which suggests a central site of action of met-enkephalin. A number of autonomic agents, particularly adrenergic ${\alpha}$-and, ${\beta}-agonists$ and antagonists modify the cardiovascular actions of met-enkephalin. Experiments in reserpine-treated and adrenalectomized rats provide no evidence of sympathetic nervous system involvement in the pressor responses to intravenous injection of opioid peptides, but rather suggest a direct peripheral action. Finally, activation of a beta-endorphinergic pathway projecting from the arcuate nucleus to the nucleus tractos solitarii in rats can cause naloxone reversible hypotension and bradycardia. There is evidence to implicate this pathway in antihypertensive drug action and in the modulation of baroreflex activity.

  • PDF

Patterning of Sympathetic Nerve Activity in Patients with Inner Ear Dysfunction Examined by Heart Rate Variability (심박변이도(Heart rate variability) 검사를 통한 내이(內耳) 질환 환자들의 교감 신경 활성 패턴 고찰)

  • Kim, Kyu-Seok;Nam, Hae-Jeong
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2009
  • Objective : To evaluate autonomic nerve balance and sympathetic nerve activity in patients with inner ear dysfunction as examined by heart rate variability(HRV) Research Methods and Procedures : One hundred and twenty three patients(between 15 to 59 years old) who visited Dept. of Oriental medical Opthalmology & Otolaryngology, Kyunghee university and had an examination of HRV test, were selected as subjects of our study. We checked items of HRV test(such as SDNN, RMSSD, LF, HF, TP, norm-LF, norm-HF, LF/HF ratio), and analyzed time and frequency domain differences between three groups classified as tinnitus, hearing loss and vertigo. And we compared HRV items(such as SDNN,RMSSD, TP and LF/HF ratio) with standard levels. Results and Conclusion : Our results showed no significant differences between three groups in HRV items except for mean heart rate. Patients with inner ear dysfunction showed significant lower TP than 2000$(ms^{2})$(p <0.001) and significant higher LF/HF ratio than 1.5(p=0.003). So we suggest that patients with inner ear dysfunctions such as tinnitus, vertigo and hearing loss, have sympathetic hypertonus and inactivity of autonomic nerve regulation.

  • PDF

Autonomic Neurocardiac Function in Patients with Major Depressive Disorder - Using a Heart Rate Variability Test Battery - (주요우울장애 환자에서의 자율신경심장기능 - Heart Rate Variability 검사를 사용하여 -)

  • Park, Young-Su;Lee, Kang-Joon;Kim, Hyun;Chung, Young-Cho
    • Sleep Medicine and Psychophysiology
    • /
    • v.11 no.2
    • /
    • pp.100-105
    • /
    • 2004
  • Objectives: Major depression is associated with an increased risk of cardiovascular mortality. One possible explanation for this association is that major depression influences autonomic neurocardiac regulation. However, previous studies on the relationship between heart rate variability (HRV) and major depression have revealed conflicting results. The purpose of this study is to clarify that major depressive patients compared to healthy controls show a reduction in HRV as an expression of reduced modulation of vagal activity to the heart. Methods: According to DSM-IV, the time and frequency domain HRV indices (5-min resting study) of 30 patients with major depressive disorder were compared with those of 30 healthy controls. Standardized HRV tests enable quantitative estimation of autonomic nervous system function. Results: After controlling for age and gender, subjects with major depression showed a higher heart rate and significantly lower modulation of cardiovagal activity compared to controls. The total power (TP) band, very low frequency (VLF: 0.003-0.04 Hz) band, low frequency (LF: 0.04-0.15 Hz) band, and high frequency (HF: 0.15-0.4 Hz) band were significantly reduced in subjects with major depression compared to control subjects. Conclusion: Patients with major depression may suffer from functional disturbances in the interaction between the sympathetic and parasympathetic autonomic systems.

  • PDF

A Design of IoT based Automatic Control System for Intelligent Smart Home Network (지능형 스마트 홈네트워크를 위한 IoT기반 자동조절시스템 설계)

  • Shim, JeongYon
    • Journal of Internet of Things and Convergence
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • The Internet of Thing (IoT) will be a very important core technology to implement Intelligent Smart Home Network and it will take charge of an important role connected to Smart Phone, Cloud Computing in the Ubiquitous environment. In this paper, Internal Autonomous Regulation by human autonomic nervous system was studied and its core mechanism was applied to the design of IoT based Autonomous Regulation System for Intelligent Smart Home Network. We proposed an autonomous regulating mechanism in which the factors of Temperature, Humidity and Illumination are automatically adjusted as they communicate with the connected things.