• Title/Summary/Keyword: Autonomic ganglia

Search Result 17, Processing Time 0.022 seconds

Electrodermal Activity as an Indicator of Emotional Processes

  • Boucsein, Wolfram
    • Science of Emotion and Sensibility
    • /
    • v.2 no.1
    • /
    • pp.1-25
    • /
    • 1999
  • The differentiation of emotions by means of psychophysiological measures has been only moderately successful so far. A major reason for this dilemma may be the lack of appropriate neurophysiological modeling for the various autonomic nervous system based measures being used in emotion research. The aim of the present article is to provide such a neurophysiological background for electrodermal activity which has been frequently used as an indicator of emotional processes. First, the literature is reviewd with respect to the usability of electrodermal measures as an indicators of emotion. second, the neurophysilogical sources of electrodermal phenomena in general are described. Electrodermal activity has different origins in the central nervous system, a limbic-hypothalamic source that dominates during negative emotions as opposed to a premotor and basal ganglia source being predominantly active during positive emotions. Panksepp's model of four basic emotive systems is adopted for demonstrating subcortical structures and pathways possibly involved in the elicitation of both kinds of electrodermal activity in comparison with cardiovascular in dicators of emotional processes.

  • PDF

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP (흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구)

  • Lee, Chang-Hyun;Chung, Ok-Bong;Ko, Byung-Moon;Lee, Bong-Hee;Kim, Soo-Myung;Kim, In-Shik;Yang, Hong-Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Do Opioid Receptors Play a Role in Blood Pressure Regulation?

  • Rhee, H.M.;Holaday, J.W.;Long, J.B.;Gaumann, M.D.;Yaksh, T.L.;Tyce, G.M.;Dixon, W.R.;Chang, A.P.;Mastrianni, J.A.;Mosqueda-Garcia, R.;Kunos, G.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.153-164
    • /
    • 1988
  • The potential role of endogenous opioid peptides (EOPS) in cardiovascular regulation has only recently been entertained. EOPS have been localized in brain, spinal cord, autonomic ganglia, particularly the adrenal gland, and many other peripheral tissues. There are at least five major types of opioid receptors; namely ${\mu},\;{\delta},\;k,\;{\sigma},\;and\;{\varepsilon}$ and Experimental evidence indicates that cardiovascular actions of the peptide are mediated primarily by ${\mu},\;{\delta}$ and k receptors, and that these receptor types may be allosterically coupled. In anesthetized rabbits met-enkephalin decreased blood pressure and heart rate, which closely paralleled a reduction in sympathetic discharge. Naloxone, but not naloxone methobromide, antagonized these effects, which suggests a central site of action of met-enkephalin. A number of autonomic agents, particularly adrenergic ${\alpha}$-and, ${\beta}-agonists$ and antagonists modify the cardiovascular actions of met-enkephalin. Experiments in reserpine-treated and adrenalectomized rats provide no evidence of sympathetic nervous system involvement in the pressor responses to intravenous injection of opioid peptides, but rather suggest a direct peripheral action. Finally, activation of a beta-endorphinergic pathway projecting from the arcuate nucleus to the nucleus tractos solitarii in rats can cause naloxone reversible hypotension and bradycardia. There is evidence to implicate this pathway in antihypertensive drug action and in the modulation of baroreflex activity.

  • PDF

Modulation of $GABA_A$ Receptor by Protein Kinase C in Autonomic Major Pelvic Ganglion Neurons

  • Choi, Yeun-Jong;Cha, Seung-Kyu;Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • ${\gamma}$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, and its actions are mediated by subtypes of GABA receptors named as $GABA_A$, $GABA_B,\;and\;GABA_C,\;GABA_A$, receptor consisting of ${\alpha},\;{\beta},\;{\gamma}\;and\;{\delta}$ subunits is a heterooligomeric ligand-gated chloride channel. This study was performed to investigate regulation of $GABA_A$ receptor by protein kinase C(PKC). Ion currents were recorded using gramicidine-perforated patch and whole cell patch clamp. mRNA encoding the subunits of PKC expressed in major pelvic ganglion (MPG) neurons was detected by using RT-PCR. The GABA-induced inward current was increased by PKC activators and decreased by PKC inhibitors, respectively. These effects were not associated with intracellular $Ca^{2+}$ and GAG (1-oleoyl-2-acetyl-sn-glycerol), a membrane permeable diacylglycerol (DAG) analogue. These results mean that the subfamily of PKC participating in activation of $GABA_A$ receptor would be an atypical PKC (aPKC). Among theses, ${\xi}$ isoform of aPKC was detected by RT-PCR. Taking together, we suggest that excitable $GABA_A$ receptor in sympathetic MPG neuron seemed to be regulated by aPKC, particular in ${\xi}$ isoform. The regulatory roles of PKC on excitatory $GABA_A$ receptors in sympathetic neurons of MPG may be an important factor to control the functional activity of various pelvic organs such as bowel movement, micturition and erection.

  • PDF

Effectiveness of virtual reality immersion on procedure-related pain and anxiety in outpatient pain clinic: an exploratory randomized controlled trial

  • Joo, Young;Kim, Eun-Kyung;Song, Hyun-Gul;Jung, Haesun;Park, Hanssl;Moon, Jee Youn
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.304-314
    • /
    • 2021
  • Background: The study investigated virtual reality (VR) immersion in alleviating procedure-related pain in patients with chronic pain undergoing fluoroscopy-guided minimally-invasive intervention in a prone position at an outpatient clinic. Methods: In this prospective randomized controlled study, 38 patients undergoing lumbar sympathetic ganglion block were randomized into either the VR or the control group. In the VR group, procedure-related pain was controlled via infiltration of local anesthetics while watching a 30-minute VR hypnotic program. In the control group, the skin infiltration alone was used, with the VR device switched off. The primary endpoint was an 11-point score on the numerical rating scale, indicating procedure-related pain. Patients' satisfaction with pain control, anxiety levels, the need for additional local anesthetics during the procedure, hemodynamic stability, and any adverse events were assessed. Results: Procedure-related pain was significantly lower in the VR group (3.7 ± 1.4) than in the control group (5.5 ± 1.7; P = 0.002). Post-procedural anxiety was lower in the VR group than in the control group (P = 0.025), with a significant reduction from pre-procedural anxiety (P < 0.001). Although patients' satisfaction did not differ significantly (P = 0.158) between the groups, a higher number of patients required additional local anesthetics in the control group (n = 13) than in the VR group (n = 4; P = 0.001). No severe adverse events occurred in either group during the study. Conclusions: VR immersion can be safely used as a novel adjunct to reduce procedural pain and anxiety during fluoroscopic pain intervention.