• Title/Summary/Keyword: Autonomic Nervous System Responses

Search Result 58, Processing Time 0.024 seconds

Different Responses to Acupuncture in Electroencephalogram according to Stress Level: A Randomized, Placebo-Controlled, Cross-Over Trial (스트레스 정도에 따라 침 치료가 뇌파(EEG)에 미치는 영향: 무작위배정 플라시보 대조군 교차연구)

  • Kim, Song-Yi;Kim, Sang-Woo;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.31 no.3
    • /
    • pp.136-145
    • /
    • 2014
  • Objectives : The purpose of this randomized, placebo-controlled, cross-over trial was to examine how acupuncture treatment at Shinmun(HT7) affects the brain activity and the autonomic nervous system(ANS), using electroencephalograms(EEG) and heart rate variability(HRV). Methods : Eighteen healthy volunteers participated in two separate experiments: in each experiment, either real acupuncture(RA) or non-penetrating sham acupuncture(SA) was applied at HT7 in random sequences to each person. The EEG and HRV measurements were conducted simultaneously before and during the acupuncture stimulation for 5 minutes, respectively. Resulting EEG and HRV parameters were compared between RA and SA groups. To assess differences according to the stress levels for participants, subgroup analysis was performed based on the results of the stress response index questionnaire. Results : In the results, acupuncture stimulation at HT7 increased ${\alpha}$ band in EEG. In the HRV analysis, heart rate was decreased significantly but HF and RMS-SD were increased in the RA group, compared with those of the SA group. In the subgroup analysis by stress level, participants in the RA group with high stress exhibited an increased in ${\alpha}$ band in their EEG while the low stress participants showed decrease or little increase in the band. For the SA group, ${\alpha}$ band reported relatively moderate changes in all channels. Conclusions : Our results showed that acupuncture induces changes in brain activation and the ANS. Acupuncture was related to the activation of the parasympathetic nervous system. The brain activities of the participants were different depending on the stress level.

Cardiovascular response to surprise stimulus (놀람 자극에 대한 심혈관 반응)

  • Eom, Jin-Sup;Park, Hye-Jun;Noh, Ji-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.147-156
    • /
    • 2011
  • Basic emotions such as happiness, sadness, anger, fear, and disgust have been widely used to investigate emotion-specific autonomic nervous system activity in many studies. On the contrary, surprise emotion, Suggested also as one of the basic emotions suggested by Ekman et al. (1983), has been least investigated. The purpose of this study was to provide a description of cardiovascular responses on surprise stimulus using electrocardiograph (ECG) and photoplethysmograph (PPG). ECG and PPG were recorded from 76 undergraduate students, as they were exposed to a visuo-acoustic surprise stimulus. Heart rate (HR), standard deviation of R-R interval (SD-RR), root mean square of successive R-R interval difference (RMSSD-RR), respiratory sinus arrhythmia (RSA), finger blood volume pulse amplitude (FBVPA), and finger pulse transit time (FPTT) were calculated before and after the stimulus presentation. Results show significant increase in HR, SD-RR, and RMSSD-RR, decreased FBVPA, and shortened FPTT. Evidence suggests that surprise emotion can be characterized by vasoconstriction and accelerated heart rate, sympathetic activation, and increased heart rate variability, parasympathetic activation. These results can be useful in developing an emotion theory, or profiling surprise-specific physiological responses, as well as establishing the basis for emotion recognition system in human-computer interaction.

  • PDF

Emotion Recognition Method Using Heart-Respiration Connectivity (심장과 호흡의 연결성을 이용한 감성인식 방법)

  • Lee, Dong Won;Park, Sangin;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • Physiological responses have been measured to recognize emotion. Although physiological responses have been interrelated between organs, their connectivities have been less considered for emotion recognizing. The connectivities have been assumed to enhance emotion recognition. Specially, autonomic nervous system is physiologically modulated by the interrelated functioning. Therefore, this study has been tried to analyze connectivities between heart and respiration and to find the significantly connected variables for emotion recognition. The eighteen subjects(10 male, age $24.72{\pm}2.47$) participated in the experiment. The participants were asked to listen to predetermined sound stimuli (arousal, relaxation, negative, positive) for evoking emotion. The bio-signals of heart and respiration were measured according to sound stimuli. HRV (heart rate variability) and BRV (breathing rate variability) spectrum were obtained from spectrum analysis of ECG (electrocardiogram) and RSP (respiration). The synchronization of HRV and BRV spectrum was analyzed according to each emotion. Statistical significance of relationship between them was tested by one-way ANOVA. There were significant relation of synchronization between HRV and BRV spectrum (synchronization of HF: F(3, 68) = 3.605, p = 0.018, ${\eta}^2_p=0.1372$, synchronization of LF: F(3, 68) = 5.075, p = 0.003, ${\eta}^2_p=0.1823$). HF difference of synchronization between ECG and RSP has been able to classify arousal from relaxation (p = 0.008, d = 1.4274) and LF's has negative from positive (p = 0.002, d = 1.7377). Therefore, it was confirmed that the heart and respiration to recognize the dimensional emotion by connectivity.

Development of a Photoplethysmographic method using a CMOS image sensor for Smartphone (스마트폰의 CMOS 영상센서를 이용한 광용적맥파 측정방법 개발)

  • Kim, Ho Chul;Jung, Wonsik;Lee, Kwonhee;Nam, Ki Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4021-4030
    • /
    • 2015
  • Pulse wave is the physiological responses through the autonomic nervous system such as ECG. It is relatively convenient because it can measure the signal just by applying a sensor on a finger. So, it can be usefully employed in the field of U-Healthcare. The objects of this study are acquiring the PPG (Photoplethysmography) one of the way of measuring the pulse waves in non-invasive way using the CMOS image sensor on a smartphone camera, developing the portable system judging stressful or not, and confirming the applicability in the field of u-Healthcare. PPG was acquired by using image data from smartphone camera without separate sensors and analyzed. Also, with that image signal data, HRV (Heart Rate Variability) and stress index were offered users by just using smartphone without separate host equipment. In addition, the reliability and accuracy of acquired data were improved by developing additional hardware device. From these experiments, we can confirm that measuring heart rate through the PPG, and the stress index for analysis the stress degree using the image of a smartphone camera are possible. In this study, we used a smartphone camera, not commercialized product or standardized sensor, so it has low resolution than those of using commercialized external sensor. However, despite this disadvantage, it can be usefully employed as the u-Healthcare device because it can obtain the promising data by developing additional external device for improvement reliability of result and optimization algorithm.

The Effect of Progressive Muscle Relaxation using Biofeedback on Stress Response and Natural Killer Cell in first Clinical Practice of Nursing Students (바이오휘드백을 이용한 점진적 근육이완훈련이 스트레스반응과 면역반응에 미치는 효과)

  • Kim Keum-Soon
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.7 no.1
    • /
    • pp.109-121
    • /
    • 2000
  • Increasingly nursing science is embracing the concepts and methodology derived from psycho-neuroimmunology. It has been previously shown that stress increases and immune function declines in students undergoing examinations. To date, however, no many studies have been reported on stress levels, immune function and interventions in Korean students undergoing their first clinical nursing rotation. It was proposed that nursing students during their first clinical rotation experience increase in stress because of the novelty of the situation and their lack of clinical knowledge. It was also hypothesized that biofeedback and progressive relaxation, methods of self-regulation of involuntary autonomic nervous system responses, would reduce the stress response. The purpose of this study is to test the effectiveness of progressive muscle laxation using biofeedback The effectiveness of the experimental methods was tested by measuring the degree of symptoms of stress (SOS) and the values of ephinephrine, pulse rate, blood pressure and natural killer cells. The subjects of this study were thirty nursing students divided into two groups: experimental group was progressive muscle relaxation group using biofeedback and control group. This study was conducted for 8 weeks of clinical practice. Biofeedback training was done by software developed by J&J company (1-410 form for progressive muscle training). Progressive muscle relaxation training according to Jacobson's Theory was done by messaged word from biofeedback. The data was analyzed using Chronbach' ${\alpha}$ and t-test of the SPSS program and the significance level of statistics was 5%. The results of the study were : 1) The progressive muscle relaxation training using biofeedback was effective for the reduction of symptoms of stress(t=-4.248, p<.001) under clinical practice stress conditions. 2) The progressive muscle relaxation training using biofeedback was not effective for the values of epinephrine(t=-1.294, p=.206). 3) The progressive muscle relaxation training using biofeedback was effective for the reduction of systolic blood pressure (t=-2.757, p=.01). 4) The progressive muscle relaxation training using biofeedback was effective for the reduction of diastolic blood pressure (p=-2.032, 0=.05). 5) The progressive muscle relaxation training using biofeedback was not effective for the reduction of pulse rate(t=-15, p=.988). 6) The progressive muscle relaxation training using biofeedback was effective for the maintenance of natural killer cells (t=2.381, p=02). The first clinical rotation for student nurses is a stressful experience as seen by the rise in the SOS in the control group. Biofeedback using progressive muscle relaxation were effective in preventing the rise of symptoms of stress and the blood pressure means when comparing the pre to post clinical experience, The mean natural killer cell count was depressed in the control group but not significantly different in the experimental groups, It is proposed here that stress via the hypothalamic - pituitary - adrenal axis suppressed the NK cell count whereas the relaxation methods prevented the rise in stress and the resulting immune depression. We recommend relaxation techniques using biofeedback as a health promotion technique to reduce psychological stress. In summary. the progressive muscle relaxation training using biofeedback was effective for the reduction of symptoms of stress under clinical practice stress conditions.

  • PDF

Psychosomatic Symptoms Following COVID-19 Infection (코로나19 감염과 그 이후의 정신신체증상)

  • Sunyoung Park;Shinhye Ryu;Woo Young Im
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.31 no.2
    • /
    • pp.72-78
    • /
    • 2023
  • Objectives : This study aims to identify various psychiatric symptoms and psychosomatic symptoms caused by COVID-19 infection and investigate their long-term impact. Methods : A systematic literature review was conducted, selecting papers from domestic and international databases using keywords such as "COVID-19" and "psychosomatic." A total of 16 papers, including those using structured measurement tools for psychosomatic symptoms, were included in the final analysis. Results : Psychiatric symptoms such as anxiety, depression, and somatic symptoms have been reported in acute COVID-19 infection, while long-term post-COVID symptoms include chest pain and fatigue. The frequency of long-term psychosomatic symptoms has been estimated to be 10%-20%. Factors contributing to these symptoms include psychological and social stress related to infectious diseases, gender, elderly age, a history of psychiatric disorders, and comorbid mental illnesses. It is suggested that systemic inflammation, autoimmune responses, and dysregulation of the autonomic nervous system may be involved. Conclusions : Psychosomatic symptoms arising after COVID-19 infection have a negative impact on quality of life and psychosocial functioning. Understanding and addressing psychiatric aspects are crucial for symptom prevention and treatment.

Cold Pressor Response to Seasonal Variation in Winter and Summer (국소한냉자극이 전신 및 국소혈액순환에 미치는 영향 -제 2 보 : 동계 및 하계의 계절변화에 따른 한냉반응-)

  • Park, Won-Gyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 1983
  • A possibility whether the appearance of adaptation to cold climate during winter could occur or not in Taegu area was evaluated by comparing the data obtained in winter with that obtained by the same method in summer. Circulatory response was induced by the immersion of one hand in the cold water. The systemic and local responses in the blood circulation from the immersed hand and the unimmersed opposite hand were observed simultaneously. In addition Galvanic skin resistance(GSR) that is influenced by the activity of autonomic nervous system and the vascular tonicity was recorded. The experiment was performed by examining sixty healthy college students in winter and fifty in summer, whose mean age was 21.0, mean weight $60.6{\pm}0.90\;kg(male)$ and $48.3{\pm}0.98\;kg(female)$. The cold stimulus was applied by immersing the left hand into the cold water of $5^{\circ}C$ for 3 minutes, and the response was observed on immersed left hand and unimmersed right hand simultaneously. The observation was made through determining mean blood pressure, heart rate, amplitude of photoelectric capillary pulse (APCP) and GSR. The results obtained are as follows: The mean blood pressure was elevated during the cold stimulation. The increase of blood pressure in summer was more remarkable than in winter. At the recovery period the blood pressure was decreased to the control level in winter but the decrease below the control level was observed in summer. The increase of heart rate in summer was more remarkable than in winter during the cold stimulation. At the recovery period heart rate in both winter and summer was decreased below the control level. During the cold stimulation the APCP was decreased on both hands in winter. However it was more prominent on left hand indicating additional direct cold effect on immersed hand. In summer, the decrease of APCP during immersion was less remarkable than that in winter, but the regain of APCP was faster than that in winter at the recovery period. And the prompt increase of APCP over the control level has been obtained at the 3 minutes of the recovery period. The GSR was remarkably increased on immersed hand but slightly decreased on unimmersed opposite hand during the cold stimulation. Thus the finding on immersed hand indicates that the local direct effect of cold water is more prominent than the systemic effect, where as the finding on unimmersed hand indicates that the circulatory response to painful stress elicited by the cold stimulation is more prominent than cold temperature itself. In summary, it seems that the systemic circulatory response to the local cold stimulation of the one hand is arised more from the secondary elicited pain sensation and less from the low water temperature. On the contrary to the report of Kim et $al^{39)}$, the adaptation phenomena in blood pressure to the relatively mild cold climate in winter was not observed in this study. The difference of circulatory response observed in this study between winter and summer may be due to the difference of the magnitude of subjective sensation of the cold water stimulation by the seasonal changes in air temperature.

  • PDF

Study on Effect of Varience of Physiological Responses in Color Foot Reflexology Using Color Light (컬러광을 활용한 발반사요법이 인체 생리적 반응 변화에 미치는 영향에 관한 연구)

  • Jin, Hye-Ryeon;Yu, Mi;Park, Kyung-Jun;Kim, Nam-Gyun;Chung, Sung-Whan;Kim, Dong-Wook
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.187-196
    • /
    • 2010
  • Recently, people have been suffering from stress-related fatigue and psychological disorders. Most people depend on medicine for pain relief; many treat pain also through alternative medicine or replacement therapy. However, drug therapy has many side effects, including increased stress after the therapy. In comparison, alternative therapies such as massage and foot reflexology are less damaging to the body, and such therapies can be provided without physical or psychological discomfort. In this regard, the author had previously co-developed color foot reflexology, which combines the merits of color therapy and foot reflexology; color foot reflexology has been shown to have beneficial effects without undue pain. This study investigates the effects of color foot reflexology on the physiological response of the body by comparing the body’s response to the signal with that to the placebo. Healthy adult subjects were selected for the experiment, which was conducted under optimal experimental conditions and design. The results indicated that when stimulated, parasympathetic nerves increased in HRV and that blood pressure, pulse, body heat, peripheral blood flow were dramatically activated. However, the results for the placebo indicated minimal changes or irregular outcomes. The results provide strong evidence for the beneficial effects of the color foot reflexology instrument on the autonomic nervous system and on the physiological response of the body. Future research is warranted to verify the results of the current study by examining patients suffering from diseases and disorders arising from irregular physiological functions in the context of the foot.

  • PDF