• Title/Summary/Keyword: Automotive system

Search Result 4,197, Processing Time 0.029 seconds

The Simulation of Fuel Economy Considering Transient Control Condition in a Gasoline Engine Vehicle (가솔린 엔진 장착 차량에서 과도구간 제어특성을 고려한 연비주행모드 시뮬레이션)

  • Jung, Yeon-Sik;Park, Jin-Il;Lee, Jong-Hwa;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.106-112
    • /
    • 2008
  • Modern vehicles require a high degree of refinement, including good drive ability to meet customer demands. Vehicle drive ability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. This paper focuses on the simulation of FTP-75 mode which is considered with spark timing control on transient condition. The acceleration is the most important factor for vehicle fuel economy. The retard of spark timing increases in proportion to acceleration. Likewise, bsfc(break specific fuel consumption) which is affected by spark timing also increases in proportion to acceleration. The result of simulation considered transient condition shows 0.3% of error comparing with a test on chassis-dynamometer.

ACTIVATED CARBON CANISTER PERFORMANCE FOR A SPARK IGNITION ENGINE

  • CHOI G. H.;CHOI K. S.;CHUNG Y. J.;KIM I. M.;DIBBLE R. W.;HAN S. B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • Prediction of the performance of a carbon canister in vehicle evaporative emission control system has become an important aspect of overall fuel system development and design. A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. Evaporative emissions from gasoline powered vehicles continue to be a major concern. The objective of this paper is to clarity the flow characteristics and other such fundamental data for the canister during loading and purging are needed, and this data will prove valuable in the development of the canister. This paper is to evaluate the relationship between carbon canister condition and engine performance during engine operation, and the effects of evaporative emissions on the engine performance were investigated.

Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines (승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구)

  • Park, Inseok;Hong, Seungwoo;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.

Development of Lane Change System considering Acceleration for Collision Avoidance (충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발)

  • Kang, Hyunkoo;Lee, Donghwi;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • This paper presents the lane change system for collision avoidance. The proposed algorithm for the collision avoidance consists of path generation and path following. Using a calculated TTC (Time to Collision), partial braking is operated and collision avoidance path is generated considering relative distance, velocity and acceleration. Based on the collision avoidance path, desired yaw angle and yaw rate are calculated for the automated path following. The lateral controller is designed by a Lyapunov function approach using 3 D.O.F vehicle model and vehicle parameters. The required steering angle is determined from wheel velocity, longitudinal and lateral velocity in order to follow the desired yaw angle and yaw rate. This system is developed MATLAB/Simulink and its performance is evaluated using the commercial software CarSim.

Exergy Analysis of Waste Energy Recovery System in Regasification Process of LNG FSRU (LNG FSRU의 재기화 공정에서 폐에너지회수시스템의 엑서지 분석)

  • Han, Seoung Hyun;Jo, Jae Ho;Kwon, Jeong-Tae;Park, Kyoungwoo;Choi, Byung Chul
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2022
  • In this study, the exergy characteristics were analyzed, according to the mass flow rate of the propane working fluid and the pressure change in the turbine inlet, for the efficient recovery of cold energy and exhaust heat by the waste energy recovery system applied to the LNG FSRU regasification process. When the turbine inlet pressure and mass flow rate of the Primary Rankine Cycle were kept constant, the exergy efficiency and the net power increased. This occurred as the turbine inlet pressure and the mass flow rate of the working fluid increased in the Secondary Rankine Cycle, respectively, and the maximum values were confirmed. In this regard, the fluctuations in the exergy rate flowing into and out of the system and the exergy rate destroyed by pumps, evaporators, turbines, and LNG heat exchangers (condensers) were examined in detail.

Automotive Pre-primed Coatings with Automotive Structural Adhesive for Non-weldable Binding Process (자동차 구조용 접착제를 이용한 자동차용 Pre-primed 도료의 비용접식 접합공정 적용)

  • Moon, Je-Ik;Lee, Yong-Hee;Kim, Hyun-Joong;Noh, Seung Man;Nam, Joon Hyun;Kim, Min-Su;Kim, Jun-Ki;Kim, Jong-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • Currently, automotive pre-primed coatings has been developed to overcome environmental regulations and to reduce manufacturing cost in automotive industry. By these reasons, an automotive pre-primed system has been investigated to remove the wash and pre-treatment process using a roll coating application. It is required to develop non-weldable pre-primed system for automotive structural adhesives, because pre-primed sheet coated with organic compounds is hard to be assembled by welding process. Primer 1 (polyester type) and primer 2 (urethane type) were designed to satisfy flexibility and formability for non-weldable pre-primed system. According to the results of physical property test of the primers, adhesion test such as single-lap shear test and T-peel test, primer 1 (polyester type) had better physical properties such as pencil hardness, solvent resistance, flexibility and adhesion with automotive adhesive than that of primer 2 (polyurethane type). In addition, the possibility of the non-weldable pre-primed system was applicable to automotive assembly process in place of welding process.

Experimental Study of Automotive Gasolines in a Light Aircraft Engine (자동차용 가솔린의 경비행기 엔진 적합성에 관한 실험적 연구)

  • Sung, N.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.108-117
    • /
    • 1995
  • The primary purpose of this extensive test effort was to observe real-time operational performance characteristics associated with automotive grade fuel utilized by piston engine powered light aviation aircraft. In fulfillment of this effort, baseline engine operations were established with 100LL aviation grade fuel followed by four blends of automotive grade fuel. A comprehensive sea-level-static test cell/flight test data collection and evaluation effort were conducted to review operational characteristics of a carbureted light aircraft piston engine as related to fuel volatility, fuel temperature, and fuel system pressure. Presented herein are results, data, and conclusions drawn from test cell engine operation as well as flight test operation on 100LL aviation grade and four blends of automotive grade fuel.

  • PDF

Supply Chain Ecosystem of Automotive Chip (차량용 반도체 공급망 생태계)

  • Chun, H.S.;Kim, H.T.;Roh, T.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, we analyze the automotive chip ecosystem that recently caused the global supply shortage, and attempt to derive policy implications for us from the conclusion. Automotive chips are critical parts that control various systems so that a vehicle can drive itself or operate with electricity. The current shortage in supply and demand for automotive chips is due to the inconsistency between supply and demand between automotive chip companies and car manufacturers. To promote the automotive chip industry, new investment incentives, tax cuts, and human resource training are needed.

Development of National Competency Standards for Automotive Maintenance (자동차정비직무를 위한 국가직무능력표준(NCS) 개발)

  • Jie, Myoung-Seok;Noh, Hi-Kui;Han, Young-Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 2014
  • Automotive field specialist developed National Competency Standards for Automotive Maintenance to apply for the education and evaluation of automotive maintenance. National Competency Standards scope and system for Automotive Maintenance has been developed and provided Performance Criterion, knowledge, skill, attitude, and evaluation methods for each item. Also it has provided vocational basic knowledge level and qualification frame for automotive maintenance.

A Study on Supply Chain Risk Management of Automotive (자동차 공급망 위험관리(A-SCRM) 방안 연구)

  • Kim, Dong-won;Han, Keun-hee;Jeon, In-seok;Choi, Jin-yung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.793-805
    • /
    • 2015
  • Due to the rise of automotive security problems following automotive safety and the progress of the internet technology leading to a hyper-connected society, guaranteeing the safety of automotive requires security plans in the supply chain assurance and automotive software, and risk management plans for identifying, evaluating, and controlling the risks that may occur from the supply chain since the modern automotive is a Safety Critical system. In this paper, we propose a study on Automotive Supply Chain Risk Management (A-SCRM) procedures by person interested within the automotive Life-Cycle.