• Title/Summary/Keyword: Automotive suspension system

Search Result 185, Processing Time 0.032 seconds

A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation (실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가)

  • Choi, G.J.;Noh, K.H.;Yoo, Y.M.;Kim, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance (연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석)

  • 소상균;조경일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF

Nonlinear Parameter Estimation of Suspension System (현가장치의 비선형 설계변수 추정)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The suspension system of cars is composed of dampers and springs, which usually have nonlinear characteristics. The nonlinear characteristics make the differences in the results of analytical models and experiments. In this study, the nonlinear system identification method which does not assume a special form for nonlinear dynamic systems and minimize the error by calculating the error reduction ratio is devised to estimate the nonlinear parameters of the suspension system of an EF-SONATA car from the field running test data. The results show that the spring has a cubic nonlinear term and the damper has a coupled nonlinear term. Also, the numerical results with the estimated nonlinear parameters agree well with the field test data for the different running speeds.

Hydraulically Actuated of Half Car Active Suspension System

  • Sam, Yahaya Md.;Osman, Johari Halim Shah
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1721-1726
    • /
    • 2004
  • The studies of the half active suspension have been performed using various suspension models. In the early days, the modeling considered the inputs to the active suspension as the linear forces. Recently, due to the development of new control theory, the forces input to the half car active suspension system has been replaced by an actual input to the hydraulic actuators. Therefore, the dynamic of the active suspension system now consists of the dynamic of half car suspension system plus the dynamic of the hydraulic actuators. This paper proposed a new modeling technique in integrating both dynamic models. The proportional integral sliding mode control technique is utilized to control the hydraulically actuated of the half car active suspension system. The performance of the half car hydraulically actuated active suspension system is simulated with a bump input. The results show that the proposed modeling technique and the proportional integral sliding mode controller are improved the ride comfort and ride handling of the half car active suspension system.

  • PDF

A Study on Intelligent Decentralized Active Suspension Control System with Descriptor LMI Design Method

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.198-203
    • /
    • 2008
  • An Intelligent optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory with representing by descriptor system form is presented. The validity of the linear matrix inequalities intelligent decentralized control system design with representing by descriptor system form in active suspension system through the numerical examples is also investigated.

An Application of hydraulic Semiactive Vibration Absorbers(SAVA) to Automotive Seat Suspension System (반능동 진동 흡수기의 자동차 시트 서스펜션에 대한 응용)

  • 모창기;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.160-171
    • /
    • 1999
  • The paper examines the ride performance enhancement that can be obtained by applying hydraulic semiactive vibration absorbers(SAVa) to alter the compliance characteristics of the seat/wheel suspension system. The work relies on a consistent model of the (nonlinear) hydrodynamics of the SAVA. A recently developed Lyapunov control scheme is used to provide regulation.. The performance is first examined assuming a quarter car with a seat/seat mounted mass. The paper then employs a quarter car/seat with a two mass ISO model of the seated human . The simulated results indicated that a reduction of 45% of the peak vertical acceleration is achievable with new system.

  • PDF

Performance Analysis of a Semi-Active Variable Damper Featuring Electro-Rheological Fluids (ER 유체를 이용한 반능동식 가변댐퍼의 성능해석)

  • 최승복;정재천;최용빈;허승진;서문석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • This paper presents some inherent characteristics of a semi-active variable damper featuring electro-rheological (ER) fluid. The damping force of the damper can be selectively adjusted or controlled by employing electric field to the ER fluid domain. This is possible owing to the pressure drop across the piston occured by field-dependent variable yield stress of the ER fluid. This is fundamentally different than the performance of a conventional adjustable viscous damper. To demonstrate the effectiveness and superiority over the conventional one, the proposed damper is incorporated with a suspension system. A quarter car model with the suspension system is formulated and represented by a state equation. By choosing numerical values based on realistic package size, power requirements and suitable ER properties, the performance characteristics of the suspension system are obtained and evaluated in both frequency and time domains. The effects of constant electric field and on-off controlled electric field which relates to the damping force are also examined.

  • PDF

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

Development of Plastic Suspension System for Automotive Seat (자동차 시트용 플라스틱 서스펜션 시스템 개발)

  • Cho, Jae-Ung;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Sei-Hwan;Bang, Seung-Ok;Cho, Chan-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1091-1097
    • /
    • 2011
  • This study aims to develop the plastic suspension assembly which is installed on inside of vehicle seat and supports passenger's back to provide the comfortable feeling. This design is the suspension structure to support the back equally and assemble seat back frame and plastic suspension effectively. The parts of suspension are designed by considering the property of body pressure distribution. As analysis values are approached to measured values by comparing the deformations in the cases of existed spring suspension and developed plastic suspension, the optimum design can be established.