• Title/Summary/Keyword: Automotive plant

Search Result 156, Processing Time 0.028 seconds

A Simulation Study on Handshake Location in an AS/RS with Twin Cranes for Mixed-model Production in an Automotive Plant (자동차 공장의 혼류생산을 고려한 AS/RS 내 트윈크레인 Handshake 작업영역 위치 결정에 관한 시뮬레이션 연구)

  • Jeongtae Park;Bosung Kim;Taehoon Lee;Seonghwan Lee;Soondo Hong
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.11-18
    • /
    • 2023
  • This study analyzes the effect of a handshake location of an AS/RS with twin cranes for mixed-model production line at an automobile plant. Implementing a handshake operation has the advantage for preventing route interference between twin cranes that operate without crossing into each other's working areas. However the handshake operation requires additional unloading and loading processes to retrieve assembly parts beyond the handshake area. Therefore the decision regarding the handshake location is crucial to improve efficiency of storage and retrieval operations. Simulation results show that the handshake operation with the optimal handshake location reduces the average response time of storage requests to 87% compared to non-handshake operation.

Establishment of Replacement Criteria for Stud Bolts using on High Temperature in the Power Plants (발전설비 고온부에서 사용되는 스터드 볼트의 교체기준 설명)

  • 정남용;김문영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.279-286
    • /
    • 2000
  • The stud bolts tend to degrade faster by high temperature(over 45$0^{\circ}C$). Therefore, replacement cycle inspection of stud bolts were carried out various method such as ultrasonic test(UT), magnetic test(MT), wobble test, visual test and hardness test. Especially, wobble test method has been applied to determine replacement evaluation criteria of stud bolt after long time operation. We applied three different methods on the three site and the obtained data are compared with the results from the evaluation methods. From the results, the replacement criteria for stud bolts under high temperature in power plants are proposed.

  • PDF

A Study on the Improvement of the Sound Quality of the Interior Noise of A/T Vehicle in Idle State (공 회전시 자동변속기 차량의 실내소음 음질 개선에 관한 연구)

  • 이상권;최병욱;여승동
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.110-119
    • /
    • 1993
  • 본 논문은 자동변속기를 탑재한 차량에서 에어콘(air condition)을 작동시키고, 공 회전시 기어의 변속을 "D"단에 두었을 때 실내에서 발생하는 이상음의 원인규명 및 해결 방 법에 관한 연구 결과를 논하고자 한다. 이 이상한 소음의 원인을 규명하기 위하여 실린더 내부의 연소압력, 메인 베어링캡(main bearing cap)의 진동, 엔진 마운팅 보스의 진동 및 차 량의 실내소음을 동시에 측정하여 분석하였으며 이 결과에 의하면 이상음의 원인은 크랭크 샤프트(crank shaft)의 굽힘진동이 파워플랜트(power plant)를 가진하여 진동을 증가시키고, 이 진동이 마운팅 보스를 통하여 차량의 차체에 전달되며, 차체의 진동에 의해서 발생하는 고체 전달음(structure-borne noise)이었다. 또한 이상음의 주기는 주파수 성분은 200-400Hz 이었다. 이 이상음은 크랭크 샤프트의 댐퍼 풀리의 질량을 저감하여 크랭크 샤프트의 동특 성을 개선함으로서 해결가능하고, 혹은 점화시기를 지연하여 연소 압력을 낮춤으로서 해결 가능하다.

  • PDF

Digital Manufacturing Strategy & Case study of Automotive General Assembly (자동차 조립 라인의 디지털 생산 구축 사례연구)

  • Choi M.W.;Han S.T.;Seo J.H.;Woo J.H.;Lee C.J.;Choi Y.R.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-209
    • /
    • 2005
  • In this paper, a digital simulation model for an automotive assembly line is constructed by adapting a digital manufacturing methodology. Applied methodology is a simulation for a plant level of the assembly production line. The first significance of this methodology is a validation of the production planning based on various scenarios. The second is pre-verification for the new production plan or production method. The third is a visualization of the production process. Several models were implemented and those models were verified. Then, it was possible to find a most efficient production scenario and production method.

An Investigation of the Mount Design of Engine Power System in Vehicles (차량 엔진동력계의 마운트 설계에 관한 연구)

  • 박노길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.36-54
    • /
    • 1996
  • This paper presents a design procedure of engine power system for vehicle. The implementation and operation environment of engine plant is somewhat diversed through the various kind of vehicles. Regarding this point, we adopt a multi-purposed design objective function which can be easily modified to reflect diverse mount design rules which have been recommended and used generally by relating fields. To search the mount parameters which provide the optimal performance, a direct search method based on an orthogonal array is developed and applied. Through several simulated results, the effectiveness of the developed disign tool is investigated and discussed.

  • PDF

Optimization of Process Parameters for Dry Film Thickness to Achieve Superior Water-based Coating in Automotive Industries

  • Prasad, Pranay Kant;Singh, Abhinav Kr;Singh, Sandeep;Prasad, Shailesh Kumar;Pati, Sudhanshu Shekher
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • A study on water-based epoxy coated on mild steel using the electroplating method was conducted to optimize the process parameters for dry film thickness to achieve superior paint quality at optimal cost in an automotive plant. The regression model was used to adjust various parameters such as electrode voltage, bath temperature, processing time, non-volatile matter, and surface area to optimize the dry film thickness. The average dry film thickness computed using the model was in the range of 15 - 35 ㎛. The error in the computed dry film thickness with reference to the experimentally measured dry film thickness value was - 0.5809%, which was well within the acceptable limits of all paint shop standards. Our study showed that the dry film thickness on mild steel was more sensitive to electrode voltage and bath temperature than processing time. Further, the presence of non-volatile matter was found to have the maximum impact on dry film thickness.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

A Study on the Simulation-based Design for Optimum Arrangement of Buoyancy Modules in Marine Riser System (해양 라이저의 부력재 최적 배치를 위한 시뮬레이션 기반 설계 기법에 관한 연구)

  • Oh, Jae-Won;Park, Sanghyun;Min, Cheon-Hong;Cho, Su-Gil;Hong, Sup;Bae, Dae-Sung;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • This paper reports a simulation-based design method for the optimized arrangement design of buoyancy modules in a marine riser system. A buoyancy module is used for the safe operation and structural stability of the riser. Engineers design buoyancy modules based on experience and experimental data. However, they are difficult to design because of the difficulty of conducting real sea experiments and quantifying the data. Therefore, a simulation-based design method is needed to tackle this problem. In this study, we developed a simulation-based design algorithm using a multi-body dynamic simulation and genetic algorithm to perform optimization arrangement design of a buoyancy module. The design results are discussed in this paper.

A Study for Automotive Lamp Manufacturing System Control Composing Ultra melting Process (초음파 접합 공정을 합성한 자동차용 램프 생산시스템 제어에 관한 연구)

  • Lee, Il-Kwon;Kook, Chang-Ho;Kim, Seung-Chul;Kim, Ki-Jin;Han, Ki-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • The purpose of this paper is to study of the vehicle lamp manufacturing system composing ultrasonic waves connection process. Making lamp assembly plant, it was produced in the separate process as the injection molding, ultrasonic waves bonding, annealing in the constant temperature, lamp assembling and packing. But the improvement method producing the lamp was added with one-step process by one automation technique. As a result, welding with ultrasonic waves process, the method decreased the energy consumption and noise during ultrasonic waves welding. Therefore, this method used the mathematics modeling for checking validity, it selected the stability and suitable controller using transfer function of plant and bode chart. In this study, the $180^{\circ}$ revolution control system to turn injection part upside down was $M_{eq}\;lcos{\theta}(t)$ because of gravity influence. It effected to unstable condition a system. For solving this problem, it aimed the linearization and stabilization of system by elimination $M_{eq}\;lcos{\theta}(t)$ as applying Free-forward control technique.

A TEST VERIFIED MODEL DEVELOPMENT STUDY FOR A NUCLEAR WATER CHILLER USING THE SEISMIC QUALIFICATION ANALYSIS AND TEST

  • Sur, Uk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.355-360
    • /
    • 2011
  • This paper is a study on a nuclear water chiller. It presents a test-verified finite element model of a water chiller to be used at a Nuclear Power Plant. The test-verified model predicts natural frequencies within 5% for all major modes below 50 Hz. This model accurately represents the dynamic characteristics of the actual hardware and is qualified for its use in the final stress analysis for seismic verification.