• Title/Summary/Keyword: Automotive noise

Search Result 670, Processing Time 0.03 seconds

NEW TECHNIQUE IN THE USE OF VIBRO-ACOUSTICAL RECIPROCITY WITH APPLICATION TO THE NOISE TRANSFER FUNCTION MEASUREMENT

  • Ko, K.H.;Kook, H.S.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • A noise transfer function(NTF) is the frequency response function between an input force applied to an exterior point of a vehicle body and the resultant interior sound pressure usually measured at the driver's ear position. It represents the measure of noise sensitivity for the output force transmitted to the joints between the body and chassis. The principle of vibro-acoustic reciprocity is often utilized in the measurement of NTF. One difficulty in using the volume source is that most of the previously proposed methods require the knowledge of the volume velocity of the acoustic source in advance. A new method proposed in the present work does not require any calculation related with the volume velocity of the acoustic source, but still yields even more accurate results both in the amplitude and phase of the NTF. In the present work, the new method is applied to obtain NTF data for a midsize sedan.

Development of Moving Bandpass Filter for Improving Control Performance of Active Intake Noise Control under Rapid Acceleration (급가속 흡기계의 능동소음제어 성능향상을 위한 Moving Bandpass filter 개발)

  • Jeon, Ki-Won;Oh, Jae-Eung;Lee, Choong-Hui;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1016-1019
    • /
    • 2004
  • The study of the noise reduction of an automobile has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. The method of the reduction of the induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to this problem, the modified FXLMS algorithm using Moving Bandpass Filter was proposed. In this study, MBPF was implemented and use ANC for automotive intake under revived rapidly accelerated driving conditions and it was verified its performance.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Brake Squeal Noise Due to Disk Run-out (디스크 런아웃에 기인한 브레이크 스퀼소음)

  • Lim Jae-Hoon;Cho Sung-Jin;Choi Yeon-Sun;Choi Sung-Jin;Choi Gyoo-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2005
  • This paper deals with a squeal noise in a brake system. It has been proved that the squeal noise is influenced by the angular misalignment of a disk, disk run-out, with the previously experimental study. In this study, a cause of the noise is examined by using FE analysis program(SAMCEF) and numerical analyses with a derived analytical equation of the disk based on the experimental results. The FE analyses and numerical results show that the squeal noise is due to the disk run-out as the experimental results and the frequency component of the noise equals to that of a disk's bending mode arising from the Hopf bifurcation.

Study of Flow Characteristics behind a Sunroof Wind Deflector for Wind Noise Reduction (바람소리 저감을 위한 선루프 디플렉터 주위의 유동에 관한 연구)

  • Lee, Dug-Young;Yoon, Jong-Hwan;Shin, Jae-Hyuk;Kim, Sang-Kon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.182-189
    • /
    • 2009
  • The noise from the sunroof can be divided into the low frequency buffeting noise and the high frequency turbulence noise generated when a car runs at the high driving speed. The wind deflector suppresses the buffeting noise generation by accelerating the vortex shedding from the front edge of sunroof opening, and guides the flow direction so that air can pass smoothly over the sunroof opening. To reduce the buffeting noise and the high frequency noise, it is very important to locate a deflector in a proper position depending on the driving speed and the sunroof opening width. The deflector's sectional shape also plays an important role in efficiently reducing the buffeting and high frequency noise. In this paper, we determined the optimum deflector's sectional shape and examined the flow characteristics behind a sunroof deflector through CFD analysis with changing the deflector height, the driving speed and the sunroof opening width. It is found that the deflector needs to be located in the higher location to control the buffeting noise by shedding the higher frequency vortices to accelerating vortices from the sunroof front edge. The deflector may act as a new noise source at the high driving speed, then it is desirable to put the deflector at the proper height to reduce the flow fluctuations and the noise generation. We also made a road test to verify CFD analysis results in this study.

Vibration Transmissibility Analysis and Measurement of Automotive Clutch Spring Dampers (차량 클러치 스프링 댐퍼의 진동 전달률 해석 및 측정)

  • Jang, Jae-Duk;Kim, Gi-Woo;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.902-908
    • /
    • 2013
  • The input torque ripple induced by combustion engines is a significant source of NVH(noise, vibration and harshness) problem in automotive transmissions. Because this torque fluctuation is primarily transmitted to the input shaft of automotive powertrains(e.g., automatic transmissions) when the lock-up clutches are closed, a torsional damper with helical springs is generally inserted between engine and transmissions to isolate the input vibratory energy, which is essential for the passenger comfort. The torsional vibration isolator exhibits frequency ranges in which there is low vibration transmissibility. However, the isolation performance is currently evaluated through the static torsional spring characteristics. In this study, the transmissibility of torsional spring dampers, essential dynamic performance index for vibration isolator, is first experimentally evaluated.

Design of Fuzzy Logic Adaptive Filters for Active Mufflers (능동 머플러를 위한 퍼지논리 적응필터의 설계)

  • Ahn, Dong-Jun;Park, Ki-Hong;Kim, Sun-Hee;Nam, Hyun-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.84-90
    • /
    • 2011
  • In active noise control filter, LMS algorithms which used for control filter, assure the convergence property, and computational burden of these algorithms are proportionate to the filter taps. The convergence speed of LMS algorithms is mainly determined by value of the convergence coefficient, so optimal selection of the value of convergence coefficient is very important. In this paper, We proposed novel adaptive fuzzy logic LMS algorithms with FIR filter structure which has better convergence speed and less computational burden than conventional LMS algorithms, for single channel active noise control with ill conditioned signal case. Computer simulations were performed to show the effectiveness of a proposed algorithms.

The Developement of Moving Bandpass Filter for Improving Noise Reduction of Automative Intake in Rapid Acceleration Using ANC (능동제어기법을 이용한 자동차의 급가속 흡기소음 저감을 위한 Moving Bandpass Filter의 개발)

  • Jeon Kiwon;Oh Jaeeung;Lee Choonghui;Abu Aminudin;Lee Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.152-159
    • /
    • 2005
  • The method of induction noise reduction can be classified by using passive control or active control method. However, the passive control method has a demerit to reduce the effect of noise reduction to low frequency (below) 500Hz) range and to be limited in a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used in LMS (Least-Mean-Square) algorithm because it can obtain the complex transfer function easily in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm could not match if the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve the problem in this study, the Moving Bandpass Filter(MBPF) was proposed and implemented. The ANC using MBPF for the reduction of the induction noise shows that more noise reduction as 4dB than without MBPF.

A Study for the Improvement of the Brake Squeal Noise (제동시 브레이크 소음 개선에 관한 연구)

  • 김동우;이희욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.223-228
    • /
    • 1996
  • The frequency of the brake squeal noise can be changed during braking, and this frequency shifting is due to variation of braking deceleration rate. The natural frequency of the brake system also shifted according to deceleration rate. It makes difficult to treat this problem. This paper shows an experimental study on the brake squeal noise having main frequencies of about 450~500Hz. And it shows how to improve the brake squeal noise problem.

  • PDF

Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System (자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.