• 제목/요약/키워드: Automotive engine cam

검색결과 31건 처리시간 0.024초

Oil Film Thickness Measurement of Engine Bearing and Cam/tappet Contact in an Automotive Engine

  • Choi, Jae-Kwon;Min, Byung-Soon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.71-77
    • /
    • 1995
  • The capacitance technique was used to measure the minimum oil film thickness in engine bearing and the central oil film thickness between cam and tappet. This method is based on the measurement of total capacitance of oil film. For the measurement of the oil film thickness between cam and tappet, two surfaces were assumed to be flat and parallel within the Hertzian region and all the measured capacitance originated from this region. Shear rates from the measured minimum oil film thickness are over 10$^{6}$ sec$^{-1}$ in the greater part in both two cases. The minimum oil film thickness in engine bearing is larger than the surface roughness. Between cam and tappet it is mostly smaller than the surface roughness. In spite of the awkward restriction of the reliability of measured oil film thickness, it was known that the capacitance technique makes it possible to measure the oil film thickness in elastohydrodynamic and mixed lubrication regimes as well as in hydrodynamic regime. Therefore, it is also possible to classify the lubrication regimes based on the oil film thickness.

밸브 양정의 연속 변화에 의한 준정상 유동 조건에서의 엔진 실린더헤드 유량계수 특성 (Characteristics of Flow Coefficients in an Engine Cylinder Head with a Quasi-steady Flow Condition by Continuous Variation of the Valve Lift)

  • 오대산;이충훈
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.22-27
    • /
    • 2010
  • Flow Coefficients of intake port in an engine cylinder head were measured by a newly designed flow rig. In measuring the flow coefficient with traditional method, the valve lift was manually varied by technician with adjusting a micrometer which is directly connected to the intake valve of the cylinder head. The cam shaft of the cylinder head is directly rotated by a step motor and the valve lift was automatically varied with cam shaft profile in the newly designed flow rig. The measurement of the flow coefficient was automated by rotating the cam shaft with the step motor. Automatic measurement of the flow coefficient could be safely measured by separating a technician from the noise and vibration of the traditional flow rig. Also, the automatic measurement of the flow coefficient reduce the measurement time and provide meaningful statistical data.

자동차 엔진 운동부의 트라이볼로지적 특성에 관한 고장 사례 연구 (Failure Study for Tribological Characteristics in Moving parts of the Automotive Engines)

  • 이일권;전윤수;김청균;조승현;김한구;김영규;문학훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.158-161
    • /
    • 2004
  • In recent, the automotive number of korea has risen above 14millions vehicles. The automotive was settled down goods haying to live. In a flood of this automotive the accuracy diagnosis for the vehicle certainly need for people referencing car. To do this diagnosis, the researcher has to experience many example in the field and need to system them. Expecially, the study for failure of the engine nearly research in the korea. When moving parts of engine no problem. In order to work, the engine must operate normality state. In this paper the purpose study the failure for the tribological example of engine.

  • PDF

EFFECTS OF CAM PHASE AND SPARK RETARD TO INCREASE EXHAUST GAS TEMPERATURE IN THE COLD START PERIOD OF AN SI ENGINE

  • KIM D.-S.;CHO Y.-S.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.585-590
    • /
    • 2005
  • The effects of spark timing and exhaust valve timing change on exhaust gas temperature during cold start period of an SI engine are studied through engine bench tests. The exhaust gas temperature increases when the spark timing or valve timing are retarded individually, due to late combustion or slow flame speed. Therefore, exhaust gas temperature shows a large increase when the two timings are retarded simultaneously. However, it is considered that combustion stability during cold start deteriorated under these retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be applied for the cold start period.

DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향 (Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine)

  • 장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

실험계획법에 의한 가솔린 GDI+MPI 엔진의 연비 및 성능향상 관점에서의 운전영역별 연료분사 전략에 관한 연구 (A Study of GDI+MPI Engine Operation Strategy Focusing on Fuel Economy and Full Load Performance using DOE)

  • 김도완;이승환;임종석
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.42-49
    • /
    • 2014
  • The gasoline direct injection (GDI) system is considerably spreading in automotive market due to its advantages. Nevertheless, since GDI system emit higher particle matter (PM) due to its combustion characteristics, it is difficult to meet strengthened emission regulation in near future. For this reason, a combined GDI with MPI system, so-called, dual injection (DUI) system is being investigated as a supplemental measure for the GDI system. This paper focused on power and fuel consumption effect by injection mode strategy of DUI system in part load and idle engine operating condition. In this study, port fuel injectors are installed on 2.4 liters GDI production engine in order to realize DUI system. And, at each injection mode, DOE (design of experiment) method is used to optimize engine control parameters such as dual injection ratio, start of injection timing, end of injection timing, CAM position and so on. As a consequence, DUI mode shows slightly better or equivalent fuel efficiency compared to conventional GDI engine on 9 points fuel economy mode as well as MPI mode shows less fuel consumption than GDI mode during idle operation. Furthermore, DUI system shows improvement potential of maximum 2.0% fuel consumption and 1.1% performance compared to GDI system in WOT operating condition.

TX엔진 개발경과 소개 (Developmental work of new 1.4liter gasoline engine)

  • 김재만
    • 오토저널
    • /
    • 제7권1호
    • /
    • pp.63-67
    • /
    • 1985
  • KIA는 호평의 Bongo-9을 기본 model로 하여 도시형 다목적 leisure car인 Bongo-town을 개 발하게 되었다. TX엔진은 Bongo-town 탑재용으로 기존 1.3l TC 엔진을 volume-up 하여 전 회전 영역에서 괄목할 성능향상을 보였으며 특히 탑재차량의 특성을 고려하여 저속영역 torque를 강조하였고 부품호환성 및 생산 설비의 공용화에도 주력했다. 주요 개발내용은, 1) Cooling passage 개선 및 full siamese화 2) Piston과 connecting rod의 신설계 3) Piston 조합의 semi floating화 4) Cam shaft profile 선정 및 valve timing 변경 5) Distributor 최적진각특성 결정 6) Carburetor 개발 7) Torque limited fan and fan drive 채용 등이다. 상기내용중 중요한 몇가지를 기술하고자 한다.

  • PDF

스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구 (A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine)

  • 송해박;조한승;이종화;이귀영
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션 (Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine)

  • 김철호
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

직접분사식 디젤엔진에서의 공해저감을 위한 전자분사 시스템에 관한 실험적 연구 (An Experimental Study on Electronic Injection System for Pollutant Reduction in a DI Diesel Engine)

  • 채재우;정영식;양준석;황재원
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.9-14
    • /
    • 1997
  • The pump-pipe-injector system is that most commonly used type of injection equipment for diesel engines. In this study, a new electromagnetic fuel injection system was designed and carried out the experiment of single cylinder direct injection(DI) diesel engine. This system do not need the cam shaft for fuel injection. The effects of the injection timing on the combustion process and emission were investigated. The results are that 1) atomization was improved, 2) combustion pressure was increased and ignition delay became shorter than before, 3) Low smoke level guarantee with more advanced injection timing without abnormal combustion but NOX concentration was increased as the injection time advanced.

  • PDF