• Title/Summary/Keyword: Automotive door

Search Result 130, Processing Time 0.026 seconds

Evaluation on Slam Resistance of Door Plate Module Using Vibration Testing Method (가진 시험 방법을 활용한 자동차 도어 플레이트 모듈 슬램 내구 평가)

  • Kim, Chan-Jung;Son, Tae-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.968-973
    • /
    • 2012
  • Slam testing is a mandatory testing process to evaluate the fatigue resistance of a door plate module before delivering it to car makers. This process is very hard job to complete it since the testing facilities are considerably expensive and the required testing time is relatively very long, i.e. more than eight days for a single specimen. In this paper, an accelerated testing method of a door plate module is proposed using vibration test equipment instead of the current one by exposing to the critical excitation of a door glass. Under the proposed excitation method, the similar testing result can be evaluated within less than two hours. The suitability of the proposed testing method was demonstrated by comparing failure modes of both the current testing method and the proposed one.

Air Intake Door Control for the High Air Conditioning Performance (인테이크 도어 제어를 이용한 고성능 냉난방 시스템)

  • Park, Dongkyou;Kim, Yongchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Recently, the quick heating performance is an important issue in the car because engine power becomes so high. So car makers have been adapted the additional heating devices as like PTC(Positive Temperature Coefficient) heater. And the quick cooling performance is also important issue because its result is used in the IQS(Initial Quality Study). In this paper, control of the HVAC(Heating, Ventilation and Air Conditioning) intake door has been studied for the quick heating and cooling performance. Heating performance is improved $4.0^{\circ}C$ at $-20^{\circ}C$ ambient temperature after 20 minutes. And cooling performance is improved $1.5^{\circ}C$ at $35^{\circ}C$ ambient temperature after 10 minutes. In addition, intake door control system brings on the cost reduction because the flab door can be eliminated. This intake door control system has been adapted to the new developing cars.

Numerical Evaluation of Hemming Defects Found on Automotive Door Panels (유한요소해석에 의한 자동차 도어패널의 헤밍 결함 평가)

  • Seo, O.S;Jeon, K.Y;Rhie, C.H;Kim, H.Y
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2015
  • Hemming is used to connect two sheet metal components by folding the edge of an outer panel around an inner panel to create a smooth edge. The minimization of hemming defects is critical to the final quality of automobile products because hemming is one of the last operations during fabrication. Designing the hemmed part is not easy and is influenced by the geometry of the bent part. Therefore, the main problem for automotive parts is dimensional accuracy since formed products often deviate geometrically due to large springback. Few numerical approaches using 3-dimensional finite element model have been applied to hemming due to the small element size which is needed to properly capture the bending behavior of the sheet around small die corner and the comparatively big size of automotive opening parts, such as doors, hoods and deck lids. The current study concentrates on the 3-dimensional numerical simulation of hemming for an automotive door. The relationship between the design parameters of the hemming operation and the height difference defect is shown. Quality improvement of the automotive door can be increased through the study of model parameters.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

Development of a Car Door Checker for Reducing Noise in Opening (승용차 도어의 개폐 이음 저감을 위한 도어체커 개발)

  • An, Byeongju;Son, Sungmin;Yun, Jaedeuk;Jung, Yoongho;Kim, Hyongdon;Shin, Jongil;Seo, Seungwoo;Jang, Kookjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.396-401
    • /
    • 2015
  • A door checker holds a car door at several opening angles and limits the maximum door opening, so that the door does not bump against to passengers. Recently, the performance of door checker becomes more important as the feeling of door opening and closing effects on the quality of a car. However, some of door checkers make squealing noise when they are used for ages, which causes consumer's complaints as well as decreasing commercial value of the product. In this study, after various experiments for the noise, we concluded that the major reasons of the noise are acceleration of wearing and loss of lubricant due to impurities in working parts. Therefore, we developed a new mechanism of door checker which can resolve the major reasons of the noise. The developed mechanism is effective to prevent inflow of impurities and loss of lubricant by locating working parts in the case. We also proved that the developed mechanism does not make any noise after the test of 50,000 times of operations.

3-Dimensional Finite Element Analysis of Hemming for Automotive Outer Panels by Part Model Assembling Method (부분모델 합성법을 이용한 자동차 외판의 헤밍 공정에 대한 3차원 유한요소해석)

  • 김헌영;임희택;김형종;이우홍;박춘달
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2004
  • Hemming is the last farming process in stamping and determines external quality of automotive outer panels. Few numerical approaches using 3-dimensional finite element model have been applied to a hemming process due to small element size which is needed to express the bending behavior of the sheet around small die comer and comparatively big model size of automotive opening parts, such as side door, back door and trunk lid etc In this study, part model assembling method is suggested and applied to the 3-dimensional finite element simulation of flanging and hemming process far an automotive front hood.

A Study of the Optimization of the Compounded PP Using the DOE (실험계획법을 이용한 복합 폴리프로필렌의 최적화 연구)

  • Park, Sung-Ho;Lim, Dong-Cheol;Kim, Ki-Sung;Bae, Jong-Rak;Jeon, Oh-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • In order to formulate the compounded polypropylene(C-PP) which is suitable to an automotive door trim panel, 9 sorts of properties were measured after manufacturing the C-PP using an extruder and an injection machine with polypropylene(PP), ethylene-octene rubber(EOR) and talc. Mixture design, especially extreme vertices design, in DOE with MINITAB - commercial software was used to analyze the data. The relations between each property and each component, for example, $y=0.00907222x_1+0.00870556x_2+0.0155722x_3$ for specific gravity, were found out by the regression analysis and the variance analysis. The optimized formulation of the C-PP for an automotive door trim panel was acquired at PP(77.6962), EOR(11.0238) and talc(10.2800) by use of the response optimizer(mixture) in MINITAB.

Deformation Characteristics of an Automotive Outer Door Panel by Vacuum-assisted Incremental Sheet Forming using Multi-tool paths (진공점진성형에서 복합공구경로가 차량용 외판부 도어패널의 변형특성에 미치는 영향 분석)

  • H.W. Youn;N. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.208-214
    • /
    • 2023
  • This paper discusses the deformation characteristics of a scaled-down automotive outer door panel with vacuum-assisted incremental sheet forming. The vacuum condition between the die and Al6052-H32 sheet with a thickness of 1.0 mm is reviewed with the goal of improving the geometrical accuracy of the target product. The material flow according to the forming tool path, including the multi-tool path and conventional contour tool path, is investigated considering the degradation of the pillow effect. To reduce friction between the tool and the sheet during incremental forming, automotive engine oil (5W-30) is used as a lubricant, and the strain field on the surface of the formed product is analyzed using ARGUS. By comparing the geometry and material flow characteristics of products under different test conditions, it is confirmed that the product surface quality can be significantly improved when the vacuum condition is employed in conjunction with a multi-tool path strategy.