• Title/Summary/Keyword: Automotive chassis part

Search Result 29, Processing Time 0.026 seconds

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.

Design Optimization of Hydroforming Chassis Part for improving Front Suspension Performance (전륜 서스펜션 성능향상을 위한 하이드로포밍 샤시 부품의 설계 최적화)

  • Moon, M.B.;Kim, Y.G.;Kim, H.S.;Jin, K.S.;Kim, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.187-190
    • /
    • 2009
  • Recently, automotive companies have invested in vehicle weight reduction and clean car development because of oil price rises and environmental problems. In particular, USA car makers have developed the vehicle spending 1 liter per 34km complying with PNGV(Partnership for a new generation of vehicle) and Europe car makers have developed the vehicle spending 3 liters per 100km. The USA government announced "The green car policy" in order to boost production of more fuel effective cars in 2009. According to the policy, it will be restricted to sell the car which spends more than 1 liter per 14.9km by 2020. To satisfy the current situations on automotive market, hydroforming technology has widely adapted vehicle structures such as engine cradle, chassis frame, A pillar, radiator support, etc. However, automotive companies have to consider formability and performance to improve and maximize the benefit from this technology in advance of detail design. The paper deals with one of the vehicle weight reduction methods using tube hydroforming technology and platform commonality in front suspension. FEA simulation is also introduced to evaluate hydro-formability and NVH performance at the beginning of design stage which is the best way to reduce the failure cost.

  • PDF

Hydro-forming and Simulation of Cross Member Parts for Automotive Engine Cradle (차량 엔진크레들용 크로스멤버 부품의 하이드로-포밍가공 및 해석)

  • Kim, Kee-Joo;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The environment and energy related problem has become one of the most important global issues in recent years. One of the most effective ways of improving the fuel efficiency of automobiles is the weight reduction. In order to obtain this goal the hydroforming technology has been adapting for the high strength steel and its application is being widened. In present study, the chassis components (mainly cross members of engine cradle) simulation and development by hydroforming technology to apply high strength steel having tensile strength of 440 MPa grade is studied. In the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Overall possibility of hydroformable chassis parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, performing and hydroforming. In the die design stage, all the components of prototyping tool were designed and interference with press was investigated from the point of geometry and thinning.

Microstructural Analysis of Local Tensile Deformation Characteristics in A356 Hollow Sand Cast Chassis Part (A356 중공 주조 샤시 부품에서의 국부적인 인장 변형 특성에 미치는 미세 조직 분석)

  • Kim, Jae-Joong;Ko, Young-Jin;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Aluminum rear lower arm is designed for luxury sedan and manufactured by hollow sand casting in the present study. Here we present the relationship between local microstructure and coupon tensile test in the rear lower arm. The characteristics of the local tensile deformation are supposed to be dependent upon Si distribution and DAS (dendrite arm spacing). Si distribution affects the yield strength and DAS affects the elongation of local area in the part, respectively.

Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement (차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석)

  • Kim, Kee-Joo;Ju, Hyung-Jun;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

A Study on the Analysis of Squeal Noise for Brake Design (저소음 브레이크 설계를 위한 스퀼 소음 해석기법 연구)

  • Kim, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun;Na, Byung-Chul;Kim, Hyun-Chul;Kwon, Seong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.830-839
    • /
    • 2006
  • The phenomenon of squeal noise in the disk brake system has been, and still is, a. problem for the automotive industry. Extensive research has been carried out in an attempt to understand the mechanism that causes squeal noise and In developing design procedures to reduce squeal noise to make vehicles more comfortable. In this paper, the study on the analysis of squeal noise is performed by using computer aided engineering to design the anti-squeal noise disk brake system. The first part describes the chassis dynamometer and the testing procedure, and second part explains the finite element model and the complex eigenvalue analysis. Finally, it is shown that the proposed squeal noise analysis could be useful to investigate the design parameters that affect the squeal noise characteristics.

A Study on the Dynamic Characteristics of Door Module Plate (도어 모듈 플레이트의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Wan-Su;Kim, Chan-Jung;Lee, Bong-Hyun;Jang, Woon-Sung;Mo, Yu-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.918-923
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.

  • PDF

Wear Characteristics of Rubber-Seal for Inflow of Dust Particles in Automobile Chassis System -PART II: The Influence of Dust Particle Inflow on Wear Characteristics of Rubber-Seal- (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-씨일 부품의 마멸특성 -PART II: 먼지유입에 따른 고무-씨일의 마멸특성-)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.261-264
    • /
    • 2009
  • Environmental factors affect parts of the automobile. When dust particles are embedded, specially, friction and wear of the rubber-seal in automobile chassis system are increased. Increase in friction and wear leads to weakness of component and reduction of mechanical life. In this study, the wear characteristics of rubber-seal for inflow of dust particles are investigated. Silica($SiO_2$) and alumina($Al_2O_3$) particles are used as a dust particle because these particles are main elements of dust particles. The sliding wear tester are used for investigate the wear characteristics of rubber-seal. If the single dust particle($SiO_2$) is embedded in the rubber-seal component, the influence of dust particle size is more than that of inflow rate on the wear characteristics of rubber-seal. If the mixed dust particles are embedded in the rubber-seal component, the wear rate is increased as the rate of alumina that has a bigger hardness is increased. If the mixed dust particles that have different hardness are embedded in the rubber-seal component, the influence of particle size is more than that of particle hardness.

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

Development of Automotive Lower Ann using Hybrid Manufacturing Process (하이브리드 제조공정을 이용한 자동차 로어암의 개발)

  • So, Sang-Woo;Hwang, Hyun-Tae;Lee, Jong-Hyun;Choi, Hung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.214-218
    • /
    • 2011
  • In order to survive in turbulent and competitive markets, automotive part manufacturers try efforts to develop new manufacturing technologies for ultra-lightweight, high-intensity and environmentally-friendly parts. Most of front lower arm is manufactured by welding process between upper- and lower panel which are produced by press stamping process. Because lower arm mounted on the cross member parts is one of the important complementary parts. So, to improve safety and lightweight of these parts, hybrid technologies are used in this paper. As hybrid technologies are applied to be front sub-frame, rear cross member and other chassis parts as well as front lower arm, the 20% lightweight has been achieved compared with existing steel parts.