• Title/Summary/Keyword: Automotive Design

Search Result 3,127, Processing Time 0.028 seconds

Optimization of Multi-component Injection Molding Process Based on Core-back System (코어백 방식을 이용한 동시사출 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Injection molding have been used for manufacturing various fields of automotive interior trims for years. The demands on the injection molding technique are grown with the further development of the automobile technique and the design presentations for cost reduction and environment-friendly. This paper shows that multi-component injection conditions are different from general injection, also shows how to optimize part design and mold design and how to manufacturing through the efficient use of multi-component injection in development process using core back system. To fulfill this purpose, all influential process parameters related to the quality of automobile parts were analyzed in terms of the correlation between them. Base on that, a innovative process will be developed by injection engineers to implement it in practice.

A Study on the Optimal Design of Automotive Cam Profiles using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상의 최적 설계에 관한 연구)

  • 김도중;김원현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • A numerical method is proposed to optimize automotive cam profiles. An acceleration curve of a cam follower motion is described by Hermite spline curves. Because of the intrinsic characteristics of the Hermite curve, it is possible to design an acceleration curve with arbitrary shape. Design variables in the optimization problem are location of control points which define the acceleration curve. Objective function includes dynamic performances as well as kinematic properties of a valve train. Similar optimization procedure was also performed using Polydyne cam profile synthesis method. Optimized profiles using the Hermite curve are proved to be superior to those using the Polydyne method.

  • PDF

PPR Information Managements for Manufacturing of Automotive Press Dies (자동차 금형 생산을 위한 PPR 정보 관리)

  • Kim, Gun-Yeon;Lee, In-Seok;Song, Myeong-Hwan;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • To achieve rapid developments and cost savings in manufacturing industries including automotive die shops, new paradigm and its supporting systems of information managements through total product life cycle are needed for concurrent and collaborative engineering. For manufacturing of automotive press dies, integrated and efficient managements of PPR information including product, manufacturing process and resource are essential. In this paper, we introduce a PLM approach to achieve engineering collaborations in product development and production of automotive dies. To prove concepts and benefits of PPR information managements, we implement new business workflow and detail procedures, PPR information management system and other related applications. By PPR information managements in PLM, improvements in quality of engineering results and savings in time from design to production of dies are possible.

A Study on the Cam Profile Synthesis Method for Automotive Engines Using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상 합성법에 관한 연구)

  • Kim, D.J.;Lee, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.90-99
    • /
    • 1995
  • A numerical method is proposed to synthesize automotive cam profiles. An arbitrary acceleration profile for the cam follower motion is divided into several segments, each of them is described by a Hermite curve. A cam profile is defined by control point locations and control variables assigned to each segment. Closed form equations are derived for velocity and displacement constraints which should be satisfied for the curve to be a cam profile. Because the method is flexible and provide arbitrary local controllability, any types of cam acceleration profile can be reproduced by the method. The method is expecially useful for the design of roller type OHC valve trains which need precise local control in the cam profile design to avoid under-cutting problems.

  • PDF

Development of a Dedicated CAD System for Welding Jigs for Automotive Body Assembly (차체 조립용 용접 지그 설계 전용 CAD시스템 개발)

  • 조병철;이상헌;김형준;우윤환;이강수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.189-200
    • /
    • 2003
  • This paper introduces the development of a three-dimensional jig design system for automotive body welding assembly. Recently, three-dimensional CAD systems have been introduced in the jig design area, because they reduce errors in design process and the design result can be used readily for virtual manufacturing simulation. However, to facilitate three-dimensional jig design, it is essential to customize three-dimensional CAD system for this specific design area. To accomplish this object, we first standardized the parts and units in a jig assembly, and then built the standard part library. We also developed the dedicated 3D design capabilities of jig units and a jig base. By using this system, design can be performed more intuitively, and verification and simulation of design results can be done more easily. The proposed system has been implemented using the UG/Open API of the Unigraphics system.

Automated Modeling and Structure Analysis of Bellows (벨로우즈 자동 모델링과 구조해석)

  • Lee, Seungwoo;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.152-157
    • /
    • 2014
  • Pro-program function of Pro/E has been utilized to expedite the design process of bellows. Design parameters selected for bellows design are manipulated to obtain the shapes user specified. User-oriented function may automate the bellows design process and this function may enable to reduce the design time remarkably. Generated bellows solid model has been applied to study of design sensitivity and optimum design. Among the selected design parameters, thickness of bellows affects system response most. Control-ring installed bellows may reduce the stress and prove to be an effective element for heavy load. The finite element analysis results combined with 3D model generated by pro-program may provide the feasible design directions to the bellows designer.

Optimal Design of the Passenger Vehicle Aluminum Seat for Weight Reduction and Durability Performance Improvement (승용차용 알루미늄 시트의 경량화 및 내구성능 향상을 위한 최적설계)

  • Kim Byung-Kil;Kim Min-Soo;Kim Bum-Jin;Heo Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2005
  • In order to minimize weight of vehicle seat, an optimum design of aluminum seat is presented while satisfying stress and fatigue life constraints. In this study, the analysis model is validated by comparing it's stress with that of test. Then, two-level orthogonal array is used to estimate the design sensitivity for 7 design variables. Finally, the sequential approximate optimization (SAO) is performed using the constructed RSM models. The approximate RSM models are sequentially updated using the analysis results corresponding to the approximate optimum obtained during the SAO. After 14 analyses, the SAO gives an optimal design that can reduce 16.7$\%$ of weight while increasing 369$\%$ of fatigue life and satisfying stress constraint.

Robust Design of Connecting Rod Using Variable Stress (변동 응력을 이용한 커넥팅 로드 강건 설계)

  • Lee, Seungwoo;Kim, Hangyu;Lee, Taehyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.716-723
    • /
    • 2016
  • A connecting rod is a crucial part for transmitting an explosive force to the crankshaft in the engine. Stress concentration in connecting rod due to the accumulation of the repeated load may initiate micro crack and result in a crucial break down of the component. Two approaches are adopted to obtain a robust design of connecting rod. Inner and outer array matrix based on combinations of control factors and noise factors are constructed for using Taguchi method. Calculated stress results for each element of matrix are plotted in the Goodman diagram. Robust design approach by Taguchi method reduces stress concentration occurred in small end fillet area of the default model. Variable stress approach using Goodman diagram also confirms a robust design by Taguchi method.

A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency (충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구)

  • Lee, Jung Hwan;Jeong, Nak Tak;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.

Aluminum Space Frame B.I.W. Optimization Considering Multidisciplinary Design Constraints (다분야 설계 제약 조건을 고려한 알루미늄 스페이스 프레임 차체의 최적 설계)

  • Kim Bum-Jin;Kim Min-Soo;Heo Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents an ASF (Aluminum Space Frame) BIW optimal design, which minimizes the weight and satisfies multi-disciplinary constraints such as the static stiffness, vibration characteristics, low-speed crash, high-speed crash and occupant protection. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method is used for efficient RSM modeling. Then, ALM method is used to solve the approximate optimization problem. The approximate optimum is sequentially added to remodel the RSM. The proposed optimization method used only 20 analyses to solve the 11-design variable design problem. Also, the optimal design can reduce the] $15\%$ of total weight while satisfying all of the multi-disciplinary design constraints.